Brain Imaging and Behavior

, Volume 12, Issue 1, pp 142–155 | Cite as

Brain white matter structural networks in patients with non-neuropsychiatric systemic lupus erythematosus

  • Ling Zhao
  • Xiangliang Tan
  • Junjing Wang
  • Kai Han
  • Meiqi Niu
  • Jun Xu
  • Xiaojin Liu
  • Xixi Zhao
  • Miao Zhong
  • Qin Huang
  • Yikai Xu
  • Ruiwang Huang
Original Research


Previous neuroimaging studies have revealed cognitive dysfunction in patients with systemic lupus erythematosus (SLE) and suggested that it may be related to disrupted brain white matter (WM) connectivity. However, no study has examined the topological properties of brain WM structural networks in SLE patients, especially in patients with non-neuropsychiatric SLE (non-NPSLE). In this study, we acquired DTI datasets from 28 non-NPSLE patients and 24 healthy controls, constructed their brain WM structural networks by using a deterministic fiber tracking approach, estimated the topological parameters of their structural networks, and compared their group differences. We reached the following results: 1) At the global level, the non-NPSLE patients showed significantly increased characteristic path length, normalized clustering coefficient and small-worldness, but significantly decreased global efficiency and local efficiency compared to the controls; 2) At the nodal level, the non-NPSLE patients had significantly decreased nodal efficiency in regions related to movement control, executive control, and working memory (bilateral precentral gyri, bilateral middle frontal gyri, bilateral inferior parietal lobes, left median cingulate gyrus and paracingulate gyrus, and right middle temporal gyrus). In addition, to pinpointing the injured WM fiber tracts in the non-NPSLE patients, we reconstructed the major brain WM pathways connecting the abnormal regions at the nodal level with the corticospinal tract (CST), superior longitudinal fasciculus-parietal terminations (SLFP), and superior longitudinal fasciculus-temporal terminations (SLFT). By analyzing the diffusion parameters along these WM fiber pathways, we detected abnormal diffusion parameters in the bilateral CST and right SLFT in the non-NPSLE patients. These results seem to indicate that injured brain WM connectivity exists in SLE patients even in the absence of neuropsychiatric symptoms.


Diffusion tensor imaging (DTI) Fractional anisotropy (FA) Fronto-parietal network Working memory network 



diffusion tensor imaging;


systemic lupus erythematosus;


neuropsychiatric systemic lupus erythematosus;


non-neuropsychiatric systemic lupus erythematosus;


American College of Rheumatology;


Systemic Lupus Erythematosus Disease Activity Index;


Systemic Lupus International Collaborating Clinics/American College of Rheumatology Damage Index;


TRActs Constrained by UnderLying Anatomy algorithm;


central nervous system;


white matter;


Tract-Based Spatial Statistics;


fractional anisotropy;


mean diffusivity;


radial diffusivity;


axial diffusivity



The authors express their appreciation to Drs. Rhoda E. and Edmund F. Perozzi for editing assistance and thank the two anonymous reviewers for their constructive comments and their suggestions.

Compliance with ethical standards


This work was partly supported by the Department of Medical Imaging Center, Nanfang Hospital, Southern Medical University, and was partly funded by the National Natural Science Foundation of China (Grant numbers: 81471654, 81428013, 81371535, 81271548, and 81271560).

Conflict of interests

The authors declare that they have no competing financial interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

11682_2017_9681_MOESM1_ESM.doc (5.3 mb)
ESM 1 (DOC 5432 kb)


  1. Andersen, S. M., Rapcsak, S. Z., & Beeson, P. M. (2010). Cost function masking during normalization of brains with focal lesions: still a necessity? NeuroImage, 53(1), 78–84.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Appenzeller, S., Vasconcelos Faria, A., Li, L. M., Costallat, L. T., & Cendes, F. (2008). Quantitative magnetic resonance imaging analyses and clinical significance of hyperintense white matter lesions in systemic lupus erythematosus patients. Annals of Neurology, 64(6), 635–643.CrossRefPubMedGoogle Scholar
  3. Astle, D. E., Luckhoo, H., Woolrich, M., Kuo, B.-C., Nobre, A. C., & Scerif, G. (2015). The neural dynamics of fronto-parietal networks in childhood revealed using magnetoencephalography. Cerebral Cortex, 25(10), 3868–3876.CrossRefPubMedGoogle Scholar
  4. Bassett, D. S., Brown, J. A., Deshpande, V., Carlson, J. M., & Grafton, S. T. (2011). Conserved and variable architecture of human white matter connectivity. NeuroImage, 54(2), 1262–1279.CrossRefPubMedGoogle Scholar
  5. Behrens, T., Berg, H. J., Jbabdi, S., Rushworth, M., & Woolrich, M. (2007). Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? NeuroImage, 34(1), 144–155.CrossRefPubMedGoogle Scholar
  6. Benedict, R., Shucard, J., Zivadinov, R., & Shucard, D. (2008). Neuropsychological impairment in systemic lupus erythematosus: a comparison with multiple sclerosis. Neuropsychology Review, 18(2), 149–166.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society. Series B (Methodological), 57(57), 289–300.Google Scholar
  8. Benner, T., van der Kouwe, A. J., & Sorensen, A. G. (2011). Diffusion imaging with prospective motion correction and reacquisition. Magnetic Resonance in Medicine, 66(1), 154–167.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Bombardier, C., Gladman, D. D., Urowitz, M. B., Caron, D., Chang, C. H., Austin, A., et al. (1992). Derivation of the SLEDAI. A disease activity index for lupus patients. Arthritis and Rheumatism, 35(6), 630–640.CrossRefPubMedGoogle Scholar
  10. Brunner, H. I., Feldman, B. M., Bombardier, C., & Silverman, E. D. (1999). Sensitivity of the systemic lupus erythematosus disease activity index, British isles lupus assessment group index, and systemic lupus activity measure in the evaluation of clinical change in childhood-onset systemic lupus erythematosus. Arthritis and Rheumatism, 42(7), 1354–1360.CrossRefPubMedGoogle Scholar
  11. Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nature Reviews. Neuroscience, 10(3), 186–198.CrossRefPubMedGoogle Scholar
  12. Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155.Google Scholar
  13. Daianu, M., Mezher, A., Mendez, M. F., Jahanshad, N., Jimenez, E. E., & Thompson, P. M. (2015). Disrupted rich club network in behavioral variant frontotemporal dementia and early-onset Alzheimer’s disease. Human Brain Mapping, 33, 868–883.Google Scholar
  14. DiFrancesco, M. W., Holland, S. K., Ris, M. D., Adler, C. M., Nelson, S., DelBello, M. P., et al. (2007). Functional magnetic resonance imaging assessment of cognitive function in childhood-onset systemic lupus erythematosus: a pilot study. Arthritis and Rheumatism, 56(12), 4151–4163. doi: 10.1002/art.23132.CrossRefPubMedGoogle Scholar
  15. Emmer, B. J., Veer, I. M., Steup-Beekman, G. M., Huizinga, T. W., van der Grond, J., & van Buchem, M. A. (2010). Tract-based spatial statistics on diffusion tensor imaging in systemic lupus erythematosus reveals localized involvement of white matter tracts. Arthritis and Rheumatism, 62(12), 3716–3721.CrossRefPubMedGoogle Scholar
  16. Ercan, E., Magro-Checa, C., Valabregue, R., Branzoli, F., Wood, E. T., Steup-Beekman, G. M., et al. (2016). Glial and axonal changes in systemic lupus erythematosus measured with diffusion of intracellular metabolites. Brain, 139(5), 1447–1457.Google Scholar
  17. Fan, L., Li, H., Zhuo, J., Zhang, Y., Wang, J., Chen, L., et al. (2016). The human Brainnetome atlas: a new brain atlas based on connectional architecture. Cerebral Cortex, 26(8), 3508–3526.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Filley, C. M., Kozora, E., Brown, M. S., Miller, D. E., West, S. G., Arciniegas, D. B., et al. (2009). White matter microstructure and cognition in non-neuropsychiatric systemic lupus erythematosus. Cognitive and Behavioral Neurology, 22(1), 38–44.CrossRefPubMedGoogle Scholar
  19. Fitzgibbon, B. M., Fairhall, S. L., Kirk, I. J., Kalev-Zylinska, M., Pui, K., Dalbeth, N., et al. (2008). Functional MRI in NPSLE patients reveals increased parietal and frontal brain activation during a working memory task compared with controls. Rheumatology (Oxford), 47(1), 50–53. doi: 10.1093/rheumatology/kem287.CrossRefGoogle Scholar
  20. Fornito, A., Zalesky, A., & Bullmore, E. T. (2010). Network scaling effects in graph analytic studies of human resting-state FMRI data. Frontiers in Systems Neuroscience, 4, 22–22.Google Scholar
  21. Gladman, D., Ginzler, E., Goldsmith, C., Fortin, P., Liang, M., Sanchez-Guerrero, J., et al. (1996). The development and initial validation of the systemic lupus international collaborating clinics/American College of Rheumatology damage index for systemic lupus erythematosus. Arthritis and Rheumatism, 39(3), 363–369.CrossRefPubMedGoogle Scholar
  22. Glasser, M. F., Coalson, T. S., Robinson, E. C., Hacker, C. D., Harwell, J., Yacoub, E., et al. (2016). A multi-modal parcellation of human cerebral cortex. Nature, 536(7615), 171–178.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gong, G., He, Y., Concha, L., Lebel, C., Gross, D. W., Evans, A. C., et al. (2009). Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cerebral Cortex, 19(3), 524–536. doi: 10.1093/cercor/bhn102.CrossRefPubMedGoogle Scholar
  24. Hochberg, M. C. (1997). Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis and Rheumatism, 40(9), 1725–1725.CrossRefPubMedGoogle Scholar
  25. Hou, J., Lin, Y., Zhang, W., Song, L., Wu, W., Wang, J., et al. (2013). Abnormalities of frontal-parietal resting-state functional connectivity are related to disease activity in patients with systemic lupus erythematosus. PloS One, 8(9), e74530.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Jbabdi, S., & Johansen-Berg, H. (2011). Tractography: where do we go from here? Brain Connectivity, 1(3), 169–183.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Jeltsch-David, H., & Muller, S. (2014). Neuropsychiatric systemic lupus erythematosus: pathogenesis and biomarkers. Nature Reviews. Neurology, 10(10), 579–596.CrossRefPubMedGoogle Scholar
  28. Jenkinson, M., Bannister, P., Brady, M., & Smith, S. (2002). Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage, 17(2), 825–841.CrossRefPubMedGoogle Scholar
  29. Jung, R. E., Caprihan, A., Chavez, R. S., Flores, R. A., Sharrar, J., Qualls, C. R., et al. (2010). Diffusion tensor imaging in neuropsychiatric systemic lupus erythematosus. BMC Neurology, 10(1), 65.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jung, R. E., Chavez, R. S., Flores, R. A., Qualls, C., Sibbitt Jr., W. L., & Roldan, C. A. (2012). White matter correlates of neuropsychological dysfunction in systemic lupus erythematosus. PloS One, 7(1), e28373.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Koldewyn, K., Yendiki, A., Weigelt, S., Gweon, H., Julian, J., Richardson, H., et al. (2014). Differences in the right inferior longitudinal fasciculus but no general disruption of white matter tracts in children with autism spectrum disorder. Proceedings of the National Academy of Sciences of the United States of America, 111(5), 1981–1986. doi: 10.1073/pnas.1324037111.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kozora, E., Hanly, J. G., Lapteva, L., & Filley, C. M. (2008). Cognitive dysfunction in systemic lupus erythematosus: past, present, and future. Arthritis and Rheumatism, 58(11), 3286–3298.CrossRefPubMedGoogle Scholar
  33. Kozora, E., Brown, M., Filley, C., Zhang, L., Miller, D., West, S., et al. (2011). Memory impairment associated with neurometabolic abnormalities of the hippocampus in patients with non-neuropsychiatric systemic lupus erythematosus. Lupus, 20(6), 598–606.CrossRefPubMedGoogle Scholar
  34. Leemans, A., & Jones, D. K. (2009). The B-matrix must be rotated when correcting for subject motion in DTI data. Magnetic Resonance in Medicine, 61(6), 1336–1349.CrossRefPubMedGoogle Scholar
  35. Li, Y., Jewells, V., Kim, M., Chen, Y., Moon, A., Armao, D., et al. (2013). Diffusion tensor imaging based network analysis detects alterations of neuroconnectivity in patients with clinically early relapsing-remitting multiple sclerosis. Human Brain Mapping, 34(12), 3376–3391.CrossRefPubMedGoogle Scholar
  36. Liang, M., Corzillius, M., Bae, S., Lew, R., Fortin, P., Gordon, C., et al. (1999). The American College of Rheumatology nomenclature and case definitions for neuropsychiatric lupus syndromes. Arthritis and Rheumatism, 42(4), 599–608.CrossRefGoogle Scholar
  37. Lin, Y., Zou, Q. H., Wang, J., Wang, Y., Zhou, D. Q., Zhang, R. H., et al. (2011). Localization of cerebral functional deficits in patients with non-neuropsychiatric systemic lupus erythematosus. Human Brain Mapping, 32(11), 1847–1855. doi: 10.1002/hbm.21158.CrossRefPubMedGoogle Scholar
  38. Lo, C. Y., Wang, P. N., Chou, K. H., Wang, J., He, Y., & Lin, C. P. (2010). Diffusion tensor tractography reveals abnormal topological organization in structural cortical networks in Alzheimer’s disease. The Journal of Neuroscience, 30(50), 16876–16885. doi: 10.1523/JNEUROSCI.4136-10.2010.CrossRefPubMedGoogle Scholar
  39. Luyendijk, J., Steens, S., Ouwendijk, W., Steup-Beekman, G., Bollen, E., van der Grond, J., et al. (2011). Neuropsychiatric systemic lupus erythematosus: lessons learned from magnetic resonance imaging. Arthritis and Rheumatism, 63(3), 722–732.CrossRefPubMedGoogle Scholar
  40. Mak, A., Ren, T., Fu, E. H., Cheak, A. A., & Ho, R. C. (2012). A prospective functional MRI study for executive function in patients with systemic lupus erythematosus without neuropsychiatric symptoms. Seminars in Arthritis and Rheumatism, 41(6), 849–858. doi: 10.1016/j.semarthrit.2011.11.010.CrossRefPubMedGoogle Scholar
  41. Mikdashi, J. A. (2016). Altered functional neuronal activity in neuropsychiatric lupus: a systematic review of the fMRI investigations. Seminars in Arthritis and Rheumatism, 45(4), 455–462.CrossRefPubMedGoogle Scholar
  42. Mori, S., & Van Zijl, P. C. (2002). Fiber tracking: principles and strategies-a technical review. NMR in Biomedicine, 15(7–8), 468–480.CrossRefPubMedGoogle Scholar
  43. Mori, S., & Zhang, J. (2006). Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron, 51(5), 527–539.CrossRefPubMedGoogle Scholar
  44. Mori, S., Crain, B. J., Chacko, V., & Van Zijl, P. (1999). Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Annals of Neurology, 45(2), 265–269.CrossRefPubMedGoogle Scholar
  45. Navari, S., & Dazzan, P. (2009). Do antipsychotic drugs affect brain structure? A systematic and critical review of MRI findings. Psychological Medicine, 39(11), 1763–1777.CrossRefPubMedGoogle Scholar
  46. Nichols, T. E., & Holmes, A. P. (2002). Nonparametric permutation tests for functional neuroimaging: a primer with examples. Human Brain Mapping, 15(1), 1–25.CrossRefPubMedGoogle Scholar
  47. Posnansky, O., Kupriyanova, Y., & Shah, N. J. (2011). On the problem of gradient calibration in diffusion weighted imaging. International Journal of Imaging Systems and Technology, 21(3), 271–279.CrossRefGoogle Scholar
  48. Ren, T., Ho, R. C.-M., & Mak, A. (2012). Dysfunctional cortico-basal ganglia-thalamic circuit and altered hippocampal-amygdala activity on cognitive set-shifting in non-neuropsychiatric systemic lupus erythematosus. Arthritis and Rheumatism, 64(12), 4048–4059. doi: 10.1002/art.34660.CrossRefPubMedGoogle Scholar
  49. Ripolles, P., Marco-Pallarés, J., de Diego-Balaguer, R., Miro, J., Falip, M., Juncadella, M., et al. (2012). Analysis of automated methods for spatial normalization of lesioned brains. NeuroImage, 60(2), 1296–1306.CrossRefPubMedGoogle Scholar
  50. Rocca, M. A., Agosta, F., Mezzapesa, D. M., Ciboddo, G., Falini, A., Comi, G., et al. (2006). An fMRI study of the motor system in patients with neuropsychiatric systemic lupus erythematosus. NeuroImage, 30(2), 478–484. doi: 10.1016/j.neuroimage.2005.09.047.CrossRefPubMedGoogle Scholar
  51. Rohde, G., Barnett, A., Basser, P., Marenco, S., & Pierpaoli, C. (2004). Comprehensive approach for correction of motion and distortion in diffusion-weighted MRI. Magnetic Resonance in Medicine, 51(1), 103–114.CrossRefPubMedGoogle Scholar
  52. Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: uses and interpretations. NeuroImage, 52(3), 1059–1069. doi: 10.1016/j.neuroimage.2009.10.003.CrossRefPubMedGoogle Scholar
  53. Scholz, J., Klein, M. C., Behrens, T. E., & Johansen-Berg, H. (2009). Training induces changes in white-matter architecture. Nature Neuroscience, 12(11), 1370–1371.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Schweitzer, J. B., Faber, T. L., Grafton, S. T., Tune, L. E., Hoffman, J. M., & Kilts, C. D. (2014). Alterations in the functional anatomy of working memory in adult attention deficit hyperactivity disorder. The American Journal of Psychiatry, 157(2), 278–280.CrossRefGoogle Scholar
  55. Shapira-Lichter, I., Weinstein, M., Lustgarten, N., Ash, E., Litinsky, I., Aloush, V., et al. (2016). Impaired diffusion tensor imaging findings in the corpus callosum and cingulum may underlie impaired learning and memory abilities in systemic lupus erythematosus. Lupus, 25(11), 1200–1208.CrossRefPubMedGoogle Scholar
  56. Shu, N., Liu, Y., Li, K., Duan, Y., Wang, J., Yu, C., et al. (2011). Diffusion tensor tractography reveals disrupted topological efficiency in white matter structural networks in multiple sclerosis. Cerebral Cortex, 21(11), 2565–2577.CrossRefPubMedGoogle Scholar
  57. Sporns, O., Tononi, G., & Edelman, G. M. (2000). Theoretical neuroanatomy: relating anatomical and functional connectivity in graphs and cortical connection matrices. Cerebral Cortex, 10(2), 127–141.CrossRefPubMedGoogle Scholar
  58. Sun, Y., Chen, Y., Collinson, S. L., Bezerianos, A., & Sim, K. (2015). Reduced hemispheric asymmetry of brain anatomical networks is linked to schizophrenia: a connectome study. Cereb Cortex, bhv255.Google Scholar
  59. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15(1), 273–289.CrossRefPubMedGoogle Scholar
  60. Urbain, C., Vogan, V. M., Ye, A. X., Pang, E. W., Doesburg, S. M., & Taylor, M. J. (2016). Desynchronization of fronto-temporal networks during working memory processing in autism. Human Brain Mapping, 37(1), 153–164.CrossRefPubMedGoogle Scholar
  61. van den Heuvel, M. P., & Sporns, O. (2011). Rich-club organization of the human connectome. The Journal of Neuroscience, 31(44), 15775–15786. doi: 10.1523/JNEUROSCI.3539-11.2011.CrossRefPubMedGoogle Scholar
  62. van Meer, M. P., Otte, W. M., van der Marel, K., Nijboer, C. H., Kavelaars, A., van der Sprenkel, J. W. B., et al. (2012). Extent of bilateral neuronal network reorganization and functional recovery in relation to stroke severity. The Journal of Neuroscience, 32(13), 4495–4507.CrossRefPubMedGoogle Scholar
  63. Wakana, S., Caprihan, A., Panzenboeck, M. M., Fallon, J. H., Perry, M., Gollub, R. L., et al. (2007). Reproducibility of quantitative tractography methods applied to cerebral white matter. NeuroImage, 36(3), 630–644. doi: 10.1016/j.neuroimage.2007.02.049.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Wang, B., Fan, Y., Lu, M., Li, S., Song, Z., Peng, X., et al. (2013). Brain anatomical networks in world class gymnasts: a DTI tractography study. NeuroImage, 65, 476–487.CrossRefPubMedGoogle Scholar
  65. Wen, W., Zhu, W., He, Y., Kochan, N. A., Reppermund, S., Slavin, M. J., et al. (2011). Discrete neuroanatomical networks are associated with specific cognitive abilities in old age. The Journal of Neuroscience, 31(4), 1204–1212.CrossRefPubMedGoogle Scholar
  66. Yendiki, A., Panneck, P., Srinivasan, P., Stevens, A., Zollei, L., Augustinack, J., et al. (2011). Automated probabilistic reconstruction of white-matter pathways in health and disease using an atlas of the underlying anatomy. Frontiers in Neuroinformatics, 5, 23. doi: 10.3389/fninf.2011.00023.CrossRefPubMedPubMedCentralGoogle Scholar
  67. Yendiki, A., Koldewyn, K., Kakunoori, S., Kanwisher, N., & Fischl, B. (2013). Spurious group differences due to head motion in a diffusion MRI study. NeuroImage, 88C, 79–90. doi: 10.1016/j.neuroimage.2013.11.027.Google Scholar
  68. Zalesky, A., Fornito, A., Harding, I. H., Cocchi, L., Yücel, M., Pantelis, C., et al. (2010). Whole-brain anatomical networks: does the choice of nodes matter? NeuroImage, 50(3), 970–983.CrossRefPubMedGoogle Scholar
  69. Zanto, T. P., & Gazzaley, A. (2013). Fronto-parietal network: flexible hub of cognitive control. Trends in Cognitive Sciences, 17(12), 602–603.CrossRefPubMedGoogle Scholar
  70. Zhang, R., Wei, Q., Kang, Z., Zalesky, A., Li, M., Xu, Y., et al. (2014). Disrupted brain anatomical connectivity in medication-naïve patients with first-episode schizophrenia. Brain Structure & Function, 220(2), 1145–1159.CrossRefGoogle Scholar
  71. Zhong, S., He, Y., & Gong, G. (2015). Convergence and divergence across construction methods for human brain white matter networks: an assessment based on individual differences. Human Brain Mapping, 36(5), 1995–2013.CrossRefPubMedGoogle Scholar
  72. Zimny, A., Szmyrka-Kaczmarek, M., Szewczyk, P., Bladowska, J., Pokryszko-Dragan, A., Gruszka, E., et al. (2014). In vivo evaluation of brain damage in the course of systemic lupus erythematosus using magnetic resonance spectroscopy, perfusion-weighted and diffusion-tensor imaging. Lupus, 23(1), 10–19.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Ling Zhao
    • 1
  • Xiangliang Tan
    • 2
  • Junjing Wang
    • 1
  • Kai Han
    • 3
  • Meiqi Niu
    • 1
  • Jun Xu
    • 4
  • Xiaojin Liu
    • 1
  • Xixi Zhao
    • 2
  • Miao Zhong
    • 1
  • Qin Huang
    • 5
  • Yikai Xu
    • 2
  • Ruiwang Huang
    • 1
  1. 1.Center for the Study of Applied Psychology, School of Psychology, Key Laboratory of Mental Health and Cognitive Science of Guangdong Province, Brain Study InstituteSouth China Normal UniversityGuangzhouPeople’s Republic of China
  2. 2.Department of Medical Imaging Center, Nanfang HospitalSouthern Medical UniversityGuangzhouPeople’s Republic of China
  3. 3.Department of Dermatology, Nanfang HospitalSouthern Medical UniversityGuangzhouPeople’s Republic of China
  4. 4.Department of Hematology, Nanfang HospitalSouthern Medical UniversityGuangzhouPeople’s Republic of China
  5. 5.Department of Rheumatology, Nanfang HospitalSouthern Medical UniversityGuangzhouPeople’s Republic of China

Personalised recommendations