Brain Imaging and Behavior

, Volume 12, Issue 1, pp 87–95 | Cite as

In vivo neuroimaging and behavioral correlates in a rat model of chemotherapy-induced cognitive dysfunction

  • Robert L. Barry
  • Nellie E. Byun
  • M. Noor Tantawy
  • Chase A. Mackey
  • George H. WilsonIII
  • Adam J. Stark
  • Michael P. Flom
  • Laura C. Gee
  • C. Chad Quarles
Original Research


Adjuvant chemotherapy has been used for decades to treat cancer, and it is well known that disruptions in cognitive function and memory are common chemotherapeutic adverse effects. However, studies using neuropsychological metrics have also reported group differences in cognitive function and memory before or without chemotherapy, suggesting that complex factors obscure the true etiology of chemotherapy-induced cognitive dysfunction (CICD) in humans. Therefore, to better understand possible mechanisms of CICD, we explored the effects of CICD in rats through cognition testing using novel object recognition (NOR) and contextual fear conditioning (CFC), and through metabolic neuroimaging via [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET). Cancer-naïve, female Sprague-Dawley rats were administered either saline (1 mL/kg) or doxorubicin (DOX) (1 mg/kg in a volume of 1 mL/kg) weekly for five weeks (total dose = 5 mg/kg), and underwent cognition testing and PET imaging immediately following the treatment regime and 30 days post treatment. We did not observe significant differences with CFC testing post-treatment for either group. However, the chemotherapy group exhibited significantly decreased performance in the NOR test and decreased 18F-FDG uptake only in the prefrontal cortex 30 days post-treatment. These results suggest that long-term impairment within the prefrontal cortex is a plausible mechanism of CICD in this study, suggesting DOX-induced toxicity in the prefrontal cortex at the dose used.


Chemotherapy Doxorubicin Chemobrain Chemotherapy-induced cognitive dysfunction Neurobehavioral testing Novel object recognition Contextual fear conditioning Neuroimaging [18F]fluorodeoxyglucose positron emission tomography 



This research was supported by the American Cancer Society (IRG-58-009-51 to C.C.Q.). The authors thank Dr. M. Scott Thompson at the Vanderbilt University Medical Center Oncology Pharmacy; Dr. Randy L. Smith Barrett at the Vanderbilt University School of Medicine Rat Neurobehavioral Core; and Fuxue Xin and Dr. Zou Yue at the Vanderbilt University Institute of Imaging Science Center for Small Animal Imaging. We also acknowledge Mackenzie Whitehurst for her assistance in analyzing the novel object recognition data and Tanner Liddy for his assistance in analyzing the contextual fear conditioning data. Finally, we thank Mrs. Joan M. Gee for asking the question “I wonder what chemotherapy will do to my brain?”; her personal experiences with breast cancer and chemotherapy in 2010 was the motivation for this study.

Author contributions

 Concept and study design: Barry, Byun, Gee, Quarles

Development of methodology: Barry, Byun, Tantawy, Wilson

Acquisition of data: Barry, Byun, Tantawy, Wilson, Gee

Analysis and interpretation of data: Barry, Byun, Tantawy, Mackey, Flom, Stark

Writing, reviewing, and revising manuscript: Barry, Byun, Tantawy, Quarles

Compliance with ethical standards

Competing financial interests

The authors declare no competing financial interests.


  1. Abraham, J., Haut, M. W., Moran, M. T., Filburn, S., Lemiuex, S., & Kuwabara, H. (2008). Adjuvant chemotherapy for breast cancer: effects on cerebral white matter seen in diffusion tensor imaging. Clin Breast Cancer, 8(1), 88–91.CrossRefPubMedGoogle Scholar
  2. Ahles, T. A., & Saykin, A. J. (2007). Candidate mechanisms for chemotherapy-induced cognitive changes. Nat Rev Cancer, 7(3), 192–201.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Ahles, T. A., Saykin, A. J., Furstenberg, C. T., Cole, B., Mott, L. A., Skalla, K., et al. (2002). Neuropsychologic impact of standard-dose systemic chemotherapy in long-term survivors of breast cancer and lymphoma. J Clin Oncol, 20(2), 485–493.CrossRefPubMedGoogle Scholar
  4. Ahles, T. A., Saykin, A. J., McDonald, B. C., Furstenberg, C. T., Cole, B. F., Hanscom, B. S., et al. (2008). Cognitive function in breast cancer patients prior to adjuvant treatment. Breast Cancer Res Treat, 110(1), 143–152.CrossRefPubMedGoogle Scholar
  5. Anagnostaras, S. G., Maren, S., & Fanselow, M. S. (1995). Scopolamine selectively disrupts the acquisition of contextual fear conditioning in rats. Neurobiol Learn Mem, 64(3), 191–194.CrossRefPubMedGoogle Scholar
  6. Anagnostaras, S. G., Maren, S., & Fanselow, M. S. (1999). Temporally graded retrograde amnesia of contextual fear after hippocampal damage in rats: within-subjects examination. J Neurosci, 19(3), 1106–1114.PubMedGoogle Scholar
  7. Anderson-Hanley, C., Sherman, M. L., Riggs, R., Agocha, V. B., & Compas, B. E. (2003). Neuropsychological effects of treatments for adults with cancer: a meta-analysis and review of the literature. J Int Neuropsychol Soc, 9(7), 967–982.CrossRefPubMedGoogle Scholar
  8. Bender, C. M., Sereika, S. M., Berga, S. L., Vogel, V. G., Brufsky, A. M., Paraska, K. K., & Ryan, C. M. (2006). Cognitive impairment associated with adjuvant therapy in breast cancer. Psychooncology, 15(5), 422–430.CrossRefPubMedGoogle Scholar
  9. Bevins, R. A., & Besheer, J. (2006). Object recognition in rats and mice: a one-trial non-matching-to-sample learning task to study 'recognition memory'. Nat Protoc, 1(3), 1306–1311.CrossRefPubMedGoogle Scholar
  10. Bloom, A. S., LaViolette, P. S., Chitambar, C. R., Collier, W., Durgerian, S. J., Kalyanaraman, B., et al. (2010). Effects of doxorubicin on brain activity and functional connectivity in rats. Proc Int Soc Magn Reson Med, 18, 1229.Google Scholar
  11. Boles Ponto, L. L., Menda, Y., Magnotta, V. A., Yamada, T. H., Denburg, N. L., & Schultz, S. K. (2015). Frontal hypometabolism in elderly breast cancer survivors determined by [18F]fluorodeoxyglucose (FDG) positron emission tomography (PET): a pilot study. Int J Geriatr Psychiatry, 30(6), 587–594.CrossRefGoogle Scholar
  12. Brezden, C. B., Phillips, K.-A., Abdolell, M., Bunston, T., & Tannock, I. F. (2000). Cognitive function in breast cancer patients receiving adjuvant chemotherapy. J Clin Oncol, 18(14), 2695–2701.CrossRefPubMedGoogle Scholar
  13. Byun, N. E., Grannan, M., Bubser, M., Barry, R. L., Thompson, A., Rosanelli, J., et al. (2014). Antipsychotic drug-like effects of the selective M4 muscarinic acetylcholine receptor positive allosteric modulator VU0152100. Neuropsychopharmacology, 39(7), 1578–1593.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Christie, L.-A., Acharya, M. M., Parihar, V. K., Nguyen, A., Martirosian, V., & Limoli, C. L. (2012). Impaired cognitive function and hippocampal neurogenesis following cancer chemotherapy. Clin Cancer Res, 18(7), 1954–1965.CrossRefPubMedGoogle Scholar
  15. de Ruiter, M. B., Reneman, L., Boogerd, W., Veltman, D. J., van Dam, F. S. A. M., Nederveen, A. J., et al. (2011). Cerebral hyporesponsiveness and cognitive impairment 10 years after chemotherapy for breast cancer. Hum Brain Mapp, 32(8), 1206–1219.CrossRefPubMedGoogle Scholar
  16. Deprez, S., Amant, F., Smeets, A., Peeters, R., Leemans, A., Van Hecke, W., et al. (2012). Longitudinal assessment of chemotherapy-induced structural changes in cerebral white matter and its correlation with impaired cognitive functioning. J Clin Oncol, 30(3), 274–281.CrossRefPubMedGoogle Scholar
  17. Ennaceur, A., & Delacour, J. (1988). A new one-trial test for neurobiological studies of memory in rats. 1: Behavioral data. Behav Brain Res, 31(1), 47–59.CrossRefPubMedGoogle Scholar
  18. Ennaceur, A., & Meliani, K. (1992). A new one-trial test for neurobiological studies of memory in rats. III. Spatial vs. non-spatial working memory. Behavioural Brain Research, 51(1), 83–92.CrossRefPubMedGoogle Scholar
  19. Freeman, J. R., & Broshek, D. K. (2002). Assessing cognitive dysfunction in breast cancer: what are the tools? Clin Breast Cancer, 3(Suppl 3), S91–S99.CrossRefPubMedGoogle Scholar
  20. Fremouw, T., Fessler, C. L., Ferguson, R. J., & Burguete, Y. (2012). Preserved learning and memory in mice following chemotherapy: 5-Fluorouracil and doxorubicin single agent treatment, doxorubicin-cyclophosphamide combination treatment. Behav Brain Res, 226(1), 154–162.CrossRefPubMedGoogle Scholar
  21. Grayson, B., Idris, N. F., & Neill, J. C. (2007). Atypical antipsychotics attenuate a sub-chronic PCP-induced cognitive deficit in the novel object recognition task in the rat. Behav Brain Res, 184(1), 31–38.CrossRefPubMedGoogle Scholar
  22. Hede, K. (2008). Chemobrain is real but may need new name. J Natl Cancer Inst, 100(3), 162–3,169.CrossRefPubMedGoogle Scholar
  23. Hess, L. M., & Insel, K. C. (2007). Chemotherapy-related change in cognitive function: a conceptual model. Oncol Nurs Forum, 34(5), 981–994.CrossRefPubMedGoogle Scholar
  24. Hurria, A., Somlo, G., & Ahles, T. (2007). Renaming “chemobrain.”. Cancer Invest, 25(6), 373–377.CrossRefPubMedGoogle Scholar
  25. Jansen, C. E., Cooper, B. A., Dodd, M. J., & Miaskowski, C. A. (2011). A prospective longitudinal study of chemotherapy-induced cognitive changes in breast cancer patients. Support Care Cancer, 19(10), 1647–1656.CrossRefPubMedGoogle Scholar
  26. Jarrett, B. L. (2013). Chemotherapy induced deficits in cognition and affective behavior. Ph.D. Thesis, Ohio State University, Neuroscience Graduate Studies Program.Google Scholar
  27. Jim, H. S. L., Phillips, K. M., Chait, S., Faul, L. A., Popa, M. A., Lee, Y.-H., et al. (2012). Meta-analysis of cognitive functioning in breast cancer survivors previously treated with standard-dose chemotherapy. J Clin Oncol, 30(29), 3578–3587.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kaiser, J., Bledowski, C., & Dietrich, J. (2014). Neural correlates of chemotherapy-related cognitive impairment. Cortex, 54, 33–50.CrossRefPubMedGoogle Scholar
  29. Kesler, S. R. (2014). Default mode network as a potential biomarker of chemotherapy-related brain injury. Neurobiol Aging, 35(Suppl 2), S11–S19.CrossRefPubMedGoogle Scholar
  30. Kesler, S. R., Kent, J. S., & O'Hara, R. (2011). Prefrontal cortex and executive function impairments in primary breast cancer. Arch Neurol, 68(11), 1447–1453.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Liedke, P. E. R., Reolon, G. K., Kilpp, B., Brunetto, A. L., Roesler, R., & Schwartsmann, G. (2009). Systemic administration of doxorubicin impairs aversively motivated memory in rats. Pharmacol Biochem Behav, 94(2), 239–243.CrossRefPubMedGoogle Scholar
  32. Loening, A. M., & Gambhir, S. S. (2003). AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging, 2(3), 131–137.CrossRefPubMedGoogle Scholar
  33. Maren, S., & Fanselow, M. S. (1997). Electrolytic lesions of the fimbria/fornix, dorsal hippocampus, or entorhinal cortex produce anterograde deficits in contextual fear conditioning in rats. Neurobiol Learn Mem, 67(2), 142–149.CrossRefPubMedGoogle Scholar
  34. Maren, S., Aharonov, G., & Fanselow, M. S. (1997). Neurotoxic lesions of the dorsal hippocampus and Pavlovian fear conditioning in rats. Behav Brain Res, 88(2), 261–274.CrossRefPubMedGoogle Scholar
  35. McAllister, T. W., Ahles, T. A., Saykin, A. J., Ferguson, R. J., McDonald, B. C., Lewis, L. D., et al. (2004). Cognitive effects of cytotoxic cancer chemotherapy: predisposing risk factors and potential treatments. Curr Psychiatry Rep, 6(5), 364–371.CrossRefPubMedGoogle Scholar
  36. McDonald, B. C., Conroy, S. K., Ahles, T. A., West, J. D., & Saykin, A. J. (2010). Gray matter reduction associated with systemic chemotherapy for breast cancer: a prospective MRI study. Breast Cancer Res Treat, 123(3), 819–828.CrossRefPubMedPubMedCentralGoogle Scholar
  37. McDonald, B. C., Conroy, S. K., Ahles, T. A., West, J. D., & Saykin, A. J. (2012). Alterations in brain activation during working memory processing associated with breast cancer and treatment: a prospective functional magnetic resonance imaging study. J Clin Oncol, 30(20), 2500–2508.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Meyers, C. A., & Scheibel, R. S. (1990). Early detection and diagnosis of neurobehavioral disorders associated with cancer and its treatment. Oncology (Williston Park), 4(7), 115–122 126–127,130.Google Scholar
  39. Meyers, C. A., Byrne, K. S., & Komaki, R. (1995). Cognitive deficits in patients with small cell lung cancer before and after chemotherapy. Lung Cancer, 12(3), 231–235.CrossRefPubMedGoogle Scholar
  40. Minisini, A., Atalay, G., Bottomley, A., Puglisi, F., Piccart, M., & Biganzoli, L. (2004). What is the effect of systemic anticancer treatment on cognitive function? Lancet Oncol, 5(5), 273–282.CrossRefPubMedGoogle Scholar
  41. Momparler, R. L., Karon, M., Siegel, S. E., & Avila, F. (1976). Effect of adriamycin on DNA, RNA, and protein synthesis in cell-free systems and intact cells. Cancer Res, 36(8), 2891–2895.PubMedGoogle Scholar
  42. Newhouse, P., & Dumas, J. (2015). Estrogen-cholinergic interactions: implications for cognitive aging. Horm Behav, 74, 173–185.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Nudelman, K. N. H., Wang, Y., McDonald, B. C., Conroy, S. K., Smith, D. J., West, J. D., et al. (2014). Altered cerebral blood flow one month after systemic chemotherapy for breast cancer: a prospective study using pulsed arterial spin labeling MRI perfusion. PLoS One, 9(5), e96713.CrossRefPubMedPubMedCentralGoogle Scholar
  44. O’Shaughnessy, J. A. (2002). Effects of epoetin alfa on cognitive function, mood, asthenia, and quality of life in women with breast cancer undergoing adjuvant chemotherapy. Clin Breast Cancer, 3(Suppl 3), S116–S120.CrossRefPubMedGoogle Scholar
  45. Rubins, D. J., Melega, W. P., Lacan, G., Way, B., Plenevaux, A., Luxen, A., & Cherry, S. R. (2003). Development and evaluation of an automated atlas-based image analysis method for microPET studies of the rat brain. Neuroimage, 20(4), 2100–2118.CrossRefPubMedGoogle Scholar
  46. Saykin, A. J., Ahles, T. A., Schoenfeld, J. D., Wishart, H. A., Pietras, C. G., Furstenberg, C. T., et al. (2003). Gray matter reduction on voxel-based morphometry in chemotherapy-treated cancer survivors. J Int Neuropsychol Soc, 9(2), 246.Google Scholar
  47. Saykin, A. J., de Ruiter, M. B., McDonald, B. C., Deprez, S., & Silverman, D. H. S. (2013). Neuroimaging biomarkers and cognitive function in non-CNS cancer and its treatment: current status and recommendations for future research. Brain Imaging Behav, 7(4), 363–373.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Schagen, S. B., van Dam, F. S. A. M., Muller, M. J., Boogerd, W., Lindeboom, J., & Bruning, P. F. (1999). Cognitive deficits after postoperative adjuvant chemotherapy for breast carcinoma. Cancer, 85(3), 640–650.CrossRefPubMedGoogle Scholar
  49. Schagen, S. B., Das, E., & van Dam, F. S. A. M. (2009). The influence of priming and pre-existing knowledge of chemotherapy-associated cognitive complaints on the reporting of such complaints in breast cancer patients. Psychooncology, 18(6), 674–678.CrossRefPubMedGoogle Scholar
  50. Schilder, C. M., Seynaeve, C., Beex, L. V., Boogerd, W., Linn, S. C., Gundy, C. M., et al. (2010a). Effects of tamoxifen and exemestane on cognitive functioning of postmenopausal patients with breast cancer: results from the neuropsychological side study of the tamoxifen and exemestane adjuvant multinational trial. J Clin Oncol, 28(8), 1294–1300.CrossRefPubMedGoogle Scholar
  51. Schilder, C. M. T., Seynaeve, C., Linn, S. C., Boogerd, W., Beex, L. V. A. M., Gundy, C. M., et al. (2010b). Cognitive functioning of postmenopausal breast cancer patients before adjuvant systemic therapy, and its association with medical and psychological factors. Crit Rev Oncol Hematol, 76(2), 133–141.CrossRefPubMedGoogle Scholar
  52. Schilder, C. M., Seynaeve, C., Linn, S. C., Boogerd, W., Gundy, C. M., Beex, L. V., et al. (2010c). The impact of different definitions and reference groups on the prevalence of cognitive impairment: a study in postmenopausal breast cancer patients before the start of adjuvant systemic therapy. Psychooncology, 19(4), 415–422.CrossRefPubMedGoogle Scholar
  53. Seigers, R., & Fardell, J. E. (2011). Neurobiological basis of chemotherapy-induced cognitive impairment: a review of rodent research. Neuroscience and Biobehavioral Reviews, 35(3), 729–741.CrossRefPubMedGoogle Scholar
  54. Seigers, R., Schagen, S. B., Van Tellingen, O., & Dietrich, J. (2013). Chemotherapy-related cognitive dysfunction: current animal studies and future directions. Brain Imaging and Behavior, 7(4), 453–459.CrossRefPubMedGoogle Scholar
  55. Seigers, R., Loos, M., Van Tellingen, O., Boogerd, W., Smit, A. B., & Schagen, S. B. (2015). Cognitive impact of cytotoxic agents in mice. Psychopharmacology, 232(1), 17–37.CrossRefPubMedGoogle Scholar
  56. Selamat, M. H., Loh, S. Y., Mackenzie, L., & Vardy, J. (2014). Chemobrain experienced by breast cancer survivors: a meta-ethnography study investigating research and care implications. PloS One, 9(9), e108002.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Silberfarb, P. M., Philibert, D., & Levine, P. M. (1980). Psychosocial aspects of neoplastic disease: II. Affective and cognitive effects of chemotherapy in cancer patients. The American Journal of Psychiatry, 137(5), 597–601.CrossRefPubMedGoogle Scholar
  58. Silverman, D. H. S., Dy, C. J., Castellon, S. A., Lai, J., Pio, B. S., Abraham, L., et al. (2007). Altered frontocortical, cerebellar, and basal ganglia activity in adjuvant-treated breast cancer survivors 5-10 years after chemotherapy. Breast Cancer Research and Treatment, 103(3), 303–311.CrossRefPubMedGoogle Scholar
  59. Stemmer, S. M., Stears, J. C., Burton, B. S., Jones, R. B., & Simon, J. H. (1994). White matter changes in patients with breast cancer treated with high-dose chemotherapy and autologous bone marrow support. AJNR. American Journal of Neuroradiology, 15(7), 1267–1273.PubMedGoogle Scholar
  60. U.S. Food and Drug Administration, Center for Drug Evaluation and Research. (2005). Guidance for industry: Estimating the maximum safe starting dose in initial clinical trials for therapeutics in adult healthy volunteers. MD: Rockville Scholar
  61. van Dam, F. S. A. M., Schagen, S. B., Muller, M. J., Boogerd, W., van der Wall, E., Droogleever Fortuyn, M. E., & Rodenhuis, S. (1998). Impairment of cognitive function in women receiving adjuvant treatment for high-risk breast cancer: high-dose versus standard-dose chemotherapy. Journal of the National Cancer Institute, 90(3), 210–218.CrossRefPubMedGoogle Scholar
  62. Vardy, J. (2009). Cognitive function in breast cancer survivors. Cancer Treatment and Research, 151, 387–419.CrossRefPubMedGoogle Scholar
  63. Vardy, J., Rourke, S., & Tannock, I. F. (2007). Evaluation of cognitive function associated with chemotherapy: a review of published studies and recommendations for future research. Journal of Clinical Oncology, 25(17), 2455–2463.CrossRefPubMedGoogle Scholar
  64. Von Ah, D., Storey, S., Jansen, C. E., & Allen, D. H. (2013). Coping strategies and interventions for cognitive changes in patients with cancer. Seminars in Oncology Nursing, 29(4), 288–299.CrossRefPubMedGoogle Scholar
  65. Wallenstein, G. V., & Vago, D. R. (2001). Intrahippocampal scopolamine impairs both acquisition and consolidation of contextual fear conditioning. Neurobiology of Learning and Memory, 75(3), 245–252.CrossRefPubMedGoogle Scholar
  66. Watson, D. J. G., Loiseau, F., Ingallinesi, M., Millan, M. J., Marsden, C. A., & Fone, K. C. F. (2012). Selective blockade of dopamine D3 receptors enhances while D2 receptor antagonism impairs social novelty discrimination and novel object recognition in rats: a key role for the prefrontal cortex. Neuropsychopharmacology, 37(3), 770–786.CrossRefPubMedGoogle Scholar
  67. Wefel, J. S., Kayl, A. E., & Meyers, C. A. (2004). Neuropsychological dysfunction associated with cancer and cancer therapies: a conceptual review of an emerging target. British Journal of Cancer, 90(9), 1691–1696.CrossRefPubMedPubMedCentralGoogle Scholar
  68. Weiss, B. (2008). Chemobrain: a translational challenge for neurotoxicology. Neurotoxicology, 29(5), 891–898.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Wieneke, M. H., & Dienst, E. R. (1995). Neuropsychological assessment of cognitive functioning following chemotherapy for breast cancer. Psychooncology, 4(1), 61–66.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Robert L. Barry
    • 1
    • 2
    • 3
    • 4
  • Nellie E. Byun
    • 1
    • 5
    • 6
  • M. Noor Tantawy
    • 1
    • 2
  • Chase A. Mackey
    • 1
  • George H. WilsonIII
    • 1
  • Adam J. Stark
    • 1
    • 7
  • Michael P. Flom
    • 1
    • 7
  • Laura C. Gee
    • 8
  • C. Chad Quarles
    • 1
    • 2
    • 9
    • 10
    • 11
  1. 1.Vanderbilt University Institute of Imaging ScienceVanderbilt University Medical CenterNashvilleUSA
  2. 2.Department of Radiology and Radiological SciencesVanderbilt University Medical CenterNashvilleUSA
  3. 3.Athinoula A. Martinos Center for Biomedical Imaging, Department of RadiologyMassachusetts General HospitalCharlestownUSA
  4. 4.Department of RadiologyHarvard Medical SchoolBostonUSA
  5. 5.Vanderbilt Center for Neuroscience Drug DiscoveryVanderbilt University Medical CenterNashvilleUSA
  6. 6.Department of PharmacologyVanderbilt University Medical CenterNashvilleUSA
  7. 7.Neuroscience ProgramVanderbilt UniversityNashvilleUSA
  8. 8.Division of Animal CareVanderbilt University Medical CenterNashvilleUSA
  9. 9.Department of Cancer BiologyVanderbilt University Medical CenterNashvilleUSA
  10. 10.Department of Biomedical EngineeringVanderbilt UniversityNashvilleUSA
  11. 11.Barrow Neurological InstituteSt. Joseph’s Hospital and Medical CenterPhoenixUSA

Personalised recommendations