Skip to main content
Log in

Functional MRI signal fluctuations highlight altered resting brain activity in Huntington’s disease

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

The fractional Amplitude of Low Frequency Fluctuations (fALFF) and the degree of local synchronization (Regional Homogeneity – ReHo) of resting-state BOLD signal have been suggested to map spontaneous neuronal activity and local functional connectivity, respectively. We compared voxelwise, independent of atrophy, the fALFF and ReHo patterns of 11 presymptomatic (ps-HD) and 28 symptomatic (sHD) Huntington’s disease mutation carriers, with those of 40 normal volunteers, and tested their possible correlations with the motor and cognitive subscores of the Unified Huntington’s Disease Rating Scale. In sHD patients, fALFF was mainly reduced bilaterally in parietal lobes (right precuneus being already affected in psHD), and in superior frontal gyri, and increased bilaterally in cerebellar lobules VI, VIII and IX, as well as in the right inferior temporal gyrus. In sHD, and to a lesser extent in psHD, ReHo was bilaterally reduced in putamina, cerebellar lobules III to VI, and superior medial frontal gyri, and increased in both psHD and sHD in fronto-basal cortices, and in the right temporal lobe. fALFF correlated inversely with cognitive scores in lobule IX of the cerebellum (mainly with total Stroop score, p < 0.0001), and in the medial portions of both thalami. These results are consistent with a reduced neuronal activity in the cortical components of the executive networks, known to be affected in Huntington’s Disease, and with reduced local functional integration in subcortical and cerebellar components of the sensori-motor network. Cerebellar clusters of significant correlation of fALFF with executive function scores may be related to compensatory mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adolphs, R. (2002). Neural systems for recognizing emotion. Current Opinion in Neurobiology, 12(2), 169–177.

    Article  CAS  PubMed  Google Scholar 

  • Aiello, M., Salvatore, E., Cachia, A., Pappata, S., Cavaliere, C., Prinster, A., et al. (2015). Relationship between simultaneously acquired resting-state regional cerebral glucose metabolism and functional MRI: a PET/MR hybrid scanner study. NeuroImage, 113, 111–121.

    Article  PubMed  Google Scholar 

  • Allen, P. A., Houston, J. R., Pollock, J. W., Buzzelli, C., Li, X., Harrington, A. K., et al. (2014). Task-specific and general cognitive effects in Chiari malformation type I. PloS One, 9(4), e94844.

    Article  PubMed  PubMed Central  Google Scholar 

  • Alonso Bde, C., Hidalgo Tobon, S., Dies Suarez, P., Garcia Flores, J., de Celis Carrillo, B., & Barragan Perez, E. (2014). A multi-methodological MR resting state network analysis to assess the changes in brain physiology of children with ADHD. PloS One, 9(6), e99119.

    Article  PubMed  Google Scholar 

  • An, L., Cao, Q. J., Sui, M. Q., Sun, L., Zou, Q. H., Zang, Y. F., et al. (2013). Local synchronization and amplitude of the fluctuation of spontaneous brain activity in attention-deficit/hyperactivity disorder: a resting-state fMRI study. Neuroscience Bulletin, 29(5), 603–613.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ashburner, J., & Friston, K. J. (2005). Unified segmentation. NeuroImage, 26(3), 839–851.

    Article  PubMed  Google Scholar 

  • Ashburner, J., Neelin, P., Collins, D. L., Evans, A., & Friston, K. (1997). Incorporating prior knowledge into image registration. NeuroImage, 6(4), 344–352.

    Article  CAS  PubMed  Google Scholar 

  • Behrens, T. E., Johansen-Berg, H., Woolrich, M. W., Smith, S. M., Wheeler-Kingshott, C. A., Boulby, P. A., et al. (2003). Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nature Neuroscience, 6(7), 750–757.

    Article  CAS  PubMed  Google Scholar 

  • Benton, A. L., & Hamsher, K. (1989). Multilingual Aphasia Examination (2nd ed.): AJA Associates, Iowa City.

  • Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34(4), 537–541.

    Article  CAS  PubMed  Google Scholar 

  • Bodranghien, F., Bastian, A., Casali, C., Hallett, M., Louis, E. D., Manto, M., et al. (2016). Consensus paper: revisiting the symptoms and signs of cerebellar syndrome. Cerebellum, 15(3), 369–391.

    Article  PubMed  PubMed Central  Google Scholar 

  • Borroni, B., Premi, E., Formenti, A., Turrone, R., Alberici, A., Cottini, E., et al. (2015). Structural and functional imaging study in dementia with Lewy bodies and Parkinson’s disease dementia. Parkinsonism & Related Disorders, 21(9), 1049–1055.

    Article  Google Scholar 

  • Bosch-Bouju, C., Hyland, B. I., & Parr-Brownlie, L. C. (2013). Motor thalamus integration of cortical, cerebellar and basal ganglia information: implications for normal and parkinsonian conditions. Frontiers in Computational Neuroscience, 7, 163.

    Article  PubMed  PubMed Central  Google Scholar 

  • Casanova, R., Srikanth, R., Baer, A., Laurienti, P. J., Burdette, J. H., Hayasaka, S., et al. (2007). Biological parametric mapping: a statistical toolbox for multimodality brain image analysis. NeuroImage, 34(1), 137–143.

    Article  PubMed  Google Scholar 

  • Chao-Gan, Y., & Yu-Feng, Z. (2010). DPARSF: a matlab toolbox for “pipeline” data analysis of resting-state fMRI. Frontiers in Systems Neuroscience, 4, 13.

    PubMed  PubMed Central  Google Scholar 

  • Cheng, W., Ji, X., Zhang, J., & Feng, J. (2012). Individual classification of ADHD patients by integrating multiscale neuroimaging markers and advanced pattern recognition techniques. Frontiers in Systems Neuroscience, 6, 58.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dogan, I., Eickhoff, C. R., Fox, P. T., Laird, A. R., Schulz, J. B., Eickhoff, S. B., et al. (2015). Functional connectivity modeling of consistent cortico-striatal degeneration in Huntington’s disease. NeuroImage: Clinical, 7, 640–652.

    Article  Google Scholar 

  • Dumas, E. M., van den Bogaard, S. J., Hart, E. P., Soeter, R. P., van Buchem, M. A., van der Grond, J., et al. (2013). Reduced functional brain connectivity prior to and after disease onset in Huntington’s disease. NeuroImage: Clinical, 2, 377–384.

    Article  Google Scholar 

  • Friston, K. J., Ashburner, J., Frith, C. D., Poline, J. B., Heather, J. D., & Frackowiak, R. S. J. (1995). Spatial registration and normalization of images. Human Brain Mapping, 3(3), 165–189.

    Article  Google Scholar 

  • Fryer, S. L., Roach, B. J., Ford, J. M., Turner, J. A., van Erp, T. G., Voyvodic, J., et al. (2015). Relating intrinsic low-frequency BOLD cortical oscillations to cognition in schizophrenia. Neuropsychopharmacology, 40(12), 2705–2714.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gao, B., Wang, Y., Liu, W., Chen, Z., Zhou, H., Yang, J., et al. (2015). Spontaneous activity associated with delusions of schizophrenia in the left medial superior frontal gyrus: a resting-state fMRI study. PloS One, 10(7), e0133766.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldman, R. I., Stern, J. M., Engel Jr., J., & Cohen, M. S. (2002). Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport, 13(18), 2487–2492.

    Article  PubMed  PubMed Central  Google Scholar 

  • Haag, L. M., Heba, S., Lenz, M., Glaubitz, B., Hoffken, O., Kalisch, T., et al. (2015). Resting BOLD fluctuations in the primary somatosensory cortex correlate with tactile acuity. Cortex, 64, 20–28.

    Article  PubMed  Google Scholar 

  • Habas, C., Kamdar, N., Nguyen, D., Prater, K., Beckmann, C. F., Menon, V., et al. (2009). Distinct cerebellar contributions to intrinsic connectivity networks. The Journal of Neuroscience, 29(26), 8586–8594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harrington, D. L., Rubinov, M., Durgerian, S., Mourany, L., Reece, C., Koenig, K., et al. (2015). Network topology and functional connectivity disturbances precede the onset of Huntington’s disease. Brain, 138(Pt 8), 2332–2346.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoptman, M. J., Zuo, X. N., Butler, P. D., Javitt, D. C., D’Angelo, D., Mauro, C. J., et al. (2010). Amplitude of low-frequency oscillations in schizophrenia: a resting state fMRI study. Schizophrenia Research, 117(1), 13–20.

    Article  PubMed  Google Scholar 

  • Huntington Study Group (1996). Unified Huntington’s disease rating scale: reliability and consistency. Huntington study group. Movement Disorders, 11(2), 136–142.

    Article  Google Scholar 

  • Iwabuchi, S. J., Krishnadas, R., Li, C., Auer, D. P., Radua, J., & Palaniyappan, L. (2015). Localized connectivity in depression: a meta-analysis of resting state functional imaging studies. Neuroscience and Biobehavioral Reviews, 51, 77–86.

    Article  PubMed  Google Scholar 

  • Jiang, L., Xu, T., He, Y., Hou, X. H., Wang, J., Cao, X. Y., et al. (2015). Toward neurobiological characterization of functional homogeneity in the human cortex: regional variation, morphological association and functional covariance network organization. Brain Structure & Function, 220(5), 2485–2507.

    Article  Google Scholar 

  • Kendall, M. G., & Gibbons, J. D. (1990). Rank correlation methods (5th ed.). London, UK: Edward Arnold.

    Google Scholar 

  • Kloppel, S., Stonnington, C. M., Petrovic, P., Mobbs, D., Tuscher, O., Craufurd, D., et al. (2010). Irritability in pre-clinical Huntington’s disease. Neuropsychologia, 48(2), 549–557.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koenig, K. A., Lowe, M. J., Harrington, D. L., Lin, J., Durgerian, S., Mourany, L., et al. (2014). Functional connectivity of primary motor cortex is dependent on genetic burden in prodromal Huntington disease. Brain Connectivity, 4(7), 535–546.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koziol, L. F., Budding, D., Andreasen, N., D’Arrigo, S., Bulgheroni, S., Imamizu, H., et al. (2014). Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum, 13(1), 151–177.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kucyi, A., Hove, M. J., Biederman, J., Van Dijk, K. R., & Valera, E. M. (2015). Disrupted functional connectivity of cerebellar default network areas in attention-deficit/hyperactivity disorder. Human Brain Mapping, 36(9), 3373–3386.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, Z., Kadivar, A., Pluta, J., Dunlop, J., & Wang, Z. (2012a). Test-retest stability analysis of resting brain activity revealed by blood oxygen level-dependent functional MRI. Journal of Magnetic Resonance Imaging, 36(2), 344–354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Z., Zhu, Y., Childress, A. R., Detre, J. A., & Wang, Z. (2012b). Relations between BOLD fMRI-derived resting brain activity and cerebral blood flow. PloS One, 7(9), e44556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, H., Liu, Z., Liang, M., Hao, Y., Tan, L., Kuang, F., et al. (2006). Decreased regional homogeneity in schizophrenia: a resting state functional magnetic resonance imaging study. Neuroreport, 17(1), 19–22.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y., Wang, K., Yu, C., He, Y., Zhou, Y., Liang, M., et al. (2008). Regional homogeneity, functional connectivity and imaging markers of Alzheimer’s disease: a review of resting-state fMRI studies. Neuropsychologia, 46(6), 1648–1656.

    Article  PubMed  Google Scholar 

  • Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. Nature, 412(6843), 150–157.

    Article  CAS  PubMed  Google Scholar 

  • Lu, H., Zuo, Y., Gu, H., Waltz, J. A., Zhan, W., Scholl, C. A., et al. (2007). Synchronized delta oscillations correlate with the resting-state functional MRI signal. Proceedings of the National Academy of Sciences of the United States of America, 104(46), 18265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lui, S., Huang, X., Chen, L., Tang, H., Zhang, T., Li, X., et al. (2009). High-field MRI reveals an acute impact on brain function in survivors of the magnitude 8.0 earthquake in China. Proceedings of the National Academy of Sciences of the United States of America, 106(36), 15412–15417.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mantini, D., Perrucci, M. G., Del Gratta, C., Romani, G. L., & Corbetta, M. (2007). Electrophysiological signatures of resting state networks in the human brain. Proceedings of the National Academy of Sciences of the United States of America, 104(32), 13170–13175.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masterton, R. A., Carney, P. W., & Jackson, G. D. (2012). Cortical and thalamic resting-state functional connectivity is altered in childhood absence epilepsy. Epilepsy Research, 99(3), 327–334.

    Article  PubMed  Google Scholar 

  • McGill, M. L., Devinsky, O., Wang, X., Quinn, B. T., Pardoe, H., Carlson, C., et al. (2014). Functional neuroimaging abnormalities in idiopathic generalized epilepsy. NeuroImage: Clinical, 6, 455–462.

    Article  Google Scholar 

  • Moosmann, M., Ritter, P., Krastel, I., Brink, A., Thees, S., Blankenburg, F., et al. (2003). Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy. NeuroImage, 20(1), 145–158.

    Article  PubMed  Google Scholar 

  • Novak, M. J., Warren, J. D., Henley, S. M., Draganski, B., Frackowiak, R. S., & Tabrizi, S. J. (2012). Altered brain mechanisms of emotion processing in pre-manifest Huntington’s disease. Brain, 135(Pt 4), 1165–1179.

    Article  PubMed  PubMed Central  Google Scholar 

  • Odish, O. F., Leemans, A., Reijntjes, R. H., van den Bogaard, S. J., Dumas, E. M., Wolterbeek, R., et al. (2015a). Microstructural brain abnormalities in Huntington’s disease: a two-year follow-up. Human Brain Mapping, 36(6), 2061–2074.

    Article  PubMed  Google Scholar 

  • Odish, O. F., van den Berg-Huysmans, A. A., van den Bogaard, S. J., Dumas, E. M., Hart, E. P., Rombouts, S. A., et al. (2015b). Longitudinal resting state fMRI analysis in healthy controls and premanifest Huntington’s disease gene carriers: a three-year follow-up study. Human Brain Mapping, 36(1), 110–119.

    Article  PubMed  Google Scholar 

  • Pelled, G., & Goelman, G. (2004). Different physiological MRI noise between cortical layers. Magnetic Resonance in Medicine, 52(4), 913–916.

    Article  PubMed  Google Scholar 

  • Poudel, G. R., Egan, G. F., Churchyard, A., Chua, P., Stout, J. C., & Georgiou-Karistianis, N. (2014). Abnormal synchrony of resting state networks in premanifest and symptomatic Huntington disease: the IMAGE-HD study. Journal of Psychiatry & Neuroscience, 39(2), 87–96.

    Google Scholar 

  • Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59(3), 2142–2154.

    Article  PubMed  Google Scholar 

  • Quarantelli, M., Salvatore, E., Giorgio, S. M., Filla, A., Cervo, A., Russo, C. V., et al. (2013). Default-mode network changes in Huntington’s disease: an integrated MRI study of functional connectivity and morphometry. PloS One, 8(8), e72159.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rees, E. M., Farmer, R., Cole, J. H., Haider, S., Durr, A., Landwehrmeyer, B., et al. (2014). Cerebellar abnormalities in Huntington’s disease: a role in motor and psychiatric impairment? Movement Disorders, 29(13), 1648–1654.

    Article  PubMed  Google Scholar 

  • Rub, U., Hoche, F., Brunt, E. R., Heinsen, H., Seidel, K., Del Turco, D., et al. (2013). Degeneration of the cerebellum in Huntington’s disease (HD): possible relevance for the clinical picture and potential gateway to pathological mechanisms of the disease process. Brain Pathology, 23(2), 165–177.

    Article  PubMed  Google Scholar 

  • Sang, L., Qin, W., Liu, Y., Han, W., Zhang, Y., Jiang, T., et al. (2012). Resting-state functional connectivity of the vermal and hemispheric subregions of the cerebellum with both the cerebral cortical networks and subcortical structures. NeuroImage, 61(4), 1213–1225.

    Article  PubMed  Google Scholar 

  • Schroeder, C. E., Lakatos, P., Kajikawa, Y., Partan, S., & Puce, A. (2008). Neuronal oscillations and visual amplification of speech. Trends in Cognitive Sciences, 12(3), 106–113.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sommer, M. A. (2003). The role of the thalamus in motor control. Current Opinion in Neurobiology, 13(6), 663–670.

    Article  CAS  PubMed  Google Scholar 

  • Sui, J., Pearlson, G. D., Du, Y., Yu, Q., Jones, T. R., Chen, J., et al. (2015). In search of multimodal neuroimaging biomarkers of cognitive deficits in schizophrenia. Biological Psychiatry, 78(11), 794–804.

    Article  PubMed  PubMed Central  Google Scholar 

  • Takeuchi, H., Taki, Y., Nouchi, R., Sekiguchi, A., Hashizume, H., Sassa, Y., et al. (2015). Degree centrality and fractional amplitude of low-frequency oscillations associated with Stroop interference. NeuroImage, 119, 197–209.

    Article  PubMed  Google Scholar 

  • Treisman, A., & Fearnley, S. (1969). The Stroop test: selective attention to colours and words. Nature, 222(5192), 437–439.

    Article  CAS  PubMed  Google Scholar 

  • Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15(1), 273–289.

    Article  CAS  PubMed  Google Scholar 

  • Van Dijk, K. R., Sabuncu, M. R., & Buckner, R. L. (2012). The influence of head motion on intrinsic functional connectivity MRI. NeuroImage, 59(1), 431–438.

    Article  PubMed  Google Scholar 

  • Walker, F. O. (2007). Huntington’s disease. Lancet, 369(9557), 218–228.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Jiao, Y., Tang, T., Wang, H., & Lu, Z. (2013). Altered regional homogeneity patterns in adults with attention-deficit hyperactivity disorder. European Journal of Radiology, 82(9), 1552–1557.

    Article  PubMed  Google Scholar 

  • Wechsler, D. (1981). Manual for the Wechsler Adult Intelligence Scale - Revised. New York: Psychological Corporation.

  • Werner, C. J., Dogan, I., Sass, C., Mirzazade, S., Schiefer, J., Shah, N. J., et al. (2014). Altered resting-state connectivity in Huntington’s disease. Human Brain Mapping, 35(6), 2582–2593.

    Article  PubMed  Google Scholar 

  • Wolf, R. C., Sambataro, F., Vasic, N., Depping, M. S., Thomann, P. A., Landwehrmeyer, G. B., et al. (2014). Abnormal resting-state connectivity of motor and cognitive networks in early manifest Huntington’s disease. Psychological Medicine, 44(15), 3341–3356.

    Article  CAS  PubMed  Google Scholar 

  • Wu, T., Zang, Y., Wang, L., Long, X., Li, K., & Chan, P. (2007). Normal aging decreases regional homogeneity of the motor areas in the resting state. Neuroscience Letters, 423(3), 189–193.

    Article  CAS  PubMed  Google Scholar 

  • Wu, T., Long, X., Zang, Y., Wang, L., Hallett, M., Li, K., et al. (2009). Regional homogeneity changes in patients with Parkinson’s disease. Human Brain Mapping, 30(5), 1502–1510.

    Article  PubMed  Google Scholar 

  • Yan, C. G., Cheung, B., Kelly, C., Colcombe, S., Craddock, R. C., Di Martino, A., et al. (2013). A comprehensive assessment of regional variation in the impact of head micromovements on functional connectomics. NeuroImage, 76, 183–201.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, T., Fang, Z., Ren, J., Xiao, F., Li, Q., Liu, L., et al. (2014). Altered spontaneous activity in treatment-naive childhood absence epilepsy revealed by regional homogeneity. Journal of the Neurological Sciences, 340(1–2), 58–62.

    Article  PubMed  Google Scholar 

  • Yu, R., Chien, Y. L., Wang, H. L., Liu, C. M., Liu, C. C., Hwang, T. J., et al. (2014). Frequency-specific alternations in the amplitude of low-frequency fluctuations in schizophrenia. Human Brain Mapping, 35(2), 627–637.

    Article  PubMed  Google Scholar 

  • Zang, Y., Jiang, T., Lu, Y., He, Y., & Tian, L. (2004). Regional homogeneity approach to fMRI data analysis. NeuroImage, 22(1), 394–400.

    Article  PubMed  Google Scholar 

  • Zeng, H., Ramos, C. G., Nair, V. A., Hu, Y., Liao, J., La, C., et al. (2015). Regional homogeneity (ReHo) changes in new onset versus chronic benign epilepsy of childhood with centrotemporal spikes (BECTS): a resting state fMRI study. Epilepsy Research, 116, 79–85.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhong, Y., Zhang, R., Li, K., Qi, R., Zhang, Z., Huang, Q., et al. (2015). Altered cortical and subcortical local coherence in PTSD: evidence from resting-state fMRI. Acta Radiologica, 56(6), 746–753.

    Article  PubMed  Google Scholar 

  • Zou, Q. H., Zhu, C. Z., Yang, Y., Zuo, X. N., Long, X. Y., Cao, Q. J., et al. (2008). An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. Journal of Neuroscience Methods, 172(1), 137–141.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuo, X. N., Xu, T., Jiang, L., Yang, Z., Cao, X. Y., He, Y., et al. (2013). Toward reliable characterization of functional homogeneity in the human brain: preprocessing, scan duration, imaging resolution and computational space. NeuroImage, 65, 374–386.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The study was supported by a grant from the Italian Ministry of Education, University and Research, project PRIN 2010-2011 20108WT59Y_007 to G.D.M.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Quarantelli.

Ethics declarations

Funding

The study was supported by a grant from the Italian Ministry of Education, University and Research, project PRIN 2010–2011 20108WT59Y_007 to G.D.M.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarappa, C., Salvatore, E., Filla, A. et al. Functional MRI signal fluctuations highlight altered resting brain activity in Huntington’s disease. Brain Imaging and Behavior 11, 1459–1469 (2017). https://doi.org/10.1007/s11682-016-9630-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-016-9630-6

Keywords

Navigation