Potential gray matter unpruned in adolescents and young adults dependent on dextromethorphan-containing cough syrups: evidence from cortical and subcortical study

  • Ying-wei Qiu
  • Xiao-fei Lv
  • Gui-hua Jiang
  • Huan-Huan Su
  • Xiao-fen Ma
  • Jun-zhang Tian
  • Fu-zhen Zhuo
Original Research

Abstract

Adolescence is a unique period in neurodevelopment. Dextromethorphan (DXM)-containing cough syrups are new addictive drugs used by adolescents and young adults. The effects of chronic DXM abuse on neurodevelopment in adolescents and young adults are still unknown. The aim of this study was to investigate the differences in cortical thickness and subcortical gray matter volumes between DXM-dependent adolescents and young adults and healthy controls, and to explore relationships between alternations in cortical thickness/subcortical volume and DXM duration, initial age of DXM use, as well as impulsive behavior in DXM-dependent adolescents and young adults. Thirty-eight DXM-dependent adolescents and young adults and 18 healthy controls underwent magnetic resonance imaging scanning, and cortical thickness across the continuous cortical surface was compared between the groups. Subcortical volumes were compared on a structure-by-structure basis. DXM-dependent adolescents and young adults exhibited significantly increased cortical thickness in the bilateral precuneus (PreC), left dorsal lateral prefrontal cortex (DLPFC. L), left inferior parietal lobe (IPL. L), right precentral gyrus (PreCG. R), right lateral occipital cortex (LOC. R), right inferior temporal cortex (ITC. R), right lateral orbitofrontal cortex (lOFC. R) and right transverse temporal gyrus (TTG. R) (all p < 0.05, multiple comparison corrected) and increased subcortical volumes of the right thalamus and right pallidum. There was a significant correlation between initial age of DXM use and cortical thickness of the DLPFC. L and PreCG. R. A significant correlation was also found between cortical thickness of the DLPFC. L and impulsive behavior in patients. This was the first study to explore relationships between cortical thickness/subcortical volume and impulsive behavior in adolescents dependent on DXM. These structural changes might explain the neurobiological mechanism of impulsive behavior in adolescent DXM users.

Keywords

Dextromethorphan Cough medicine Addiction Cortical thickness Impulsivity 

Supplementary material

11682_2016_9628_MOESM1_ESM.docx (776 kb)
ESM 1(DOCX 775 kb)

References

  1. Alcaraz, F., Marchand, A. R., Vidal, E., Guillou, A., Faugère, A., Coutureau, E., & Wolff, M. (2015). Flexible use of predictive cues beyond the orbitofrontal cortex: role of the Submedius thalamic nucleus. The Journal of Neuroscience, 35, 13183–13193.CrossRefPubMedGoogle Scholar
  2. Alia-Klein, N., Parvaz, M. A., Woicik, P. A., Konova, A. B., Maloney, T., Shumay, E., Wang, R., Telang, F., Biegon, A., & Wang, G.-J. (2011). Gene × disease interaction on orbitofrontal gray matter in cocaine addiction. Archives of General Psychiatry, 68, 283–294.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Crews, F. T., Braun, C. J., Hoplight, B., Switzer, R. C., Knapp, D. J., & Darin, J. (2000). Binge ethanol consumption causes differential brain damage in young adolescent rats compared with adult rats. ALCOHOLISM-NEW YORK THEN BALTIMORE, 24, 1712–1723.Google Scholar
  4. Darboe, M. N., Keenan Jr., G. R., & Richards, T. K. (1996). The abuse of dextromethorphan-based cough syrup: a pilot study of the community of Waynesboro, Pennsylvania. Adolescence, 31, 633.PubMedGoogle Scholar
  5. De Bellis, M. D., Narasimhan, A., Thatcher, D. L., Keshavan, M. S., Soloff, P., & Clark, D. B. (2005). Prefrontal cortex, thalamus, and cerebellar volumes in adolescents and young adults with adolescent-onset alcohol use disorders and comorbid mental disorders. Alcoholism-clinical and experimental. Research, 29, 1590–1600.Google Scholar
  6. Dong, G., DeVito, E., Huang, J., & Du, X. (2012). Diffusion tensor imaging reveals thalamus and posterior cingulate cortex abnormalities in internet gaming addicts. Journal of Psychiatric Research, 46, 1212–1216.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Filbey, F. M., Aslan, S., Calhoun, V. D., Spence, J. S., Damaraju, E., Caprihan, A., & Segall, J. (2014). Long-term effects of marijuana use on the brain. Proceedings of the National Academy of Sciences, 111, 16913–16918.CrossRefGoogle Scholar
  8. Fingelkurts, A. A., Fingelkurts, A. A., Kivisaari, R., Autti, T., Borisov, S., Puuskari, V., Jokela, O., & Kähkönen, S. (2007). Opioid withdrawal results in an increased local and remote functional connectivity at EEG alpha and beta frequency bands. Neuroscience Research, 58, 40–49.CrossRefPubMedGoogle Scholar
  9. Fischl, B., Sereno, M. I., & Dale, A. M. (1999a). Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. NeuroImage, 9, 195–207.CrossRefPubMedGoogle Scholar
  10. Fischl, B., Sereno, M. I., Tootell, R. B., & Dale, A. M. (1999b). High-resolution intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping, 8, 272–284.CrossRefPubMedGoogle Scholar
  11. Gallinat, J., Meisenzahl, E., Jacobsen, L. K., Kalus, P., Bierbrauer, J., Kienast, T., Witthaus, H., Leopold, K., Seifert, F., & Schubert, F. (2006). Smoking and structural brain deficits: a volumetric MR investigation. European Journal of Neuroscience, 24, 1744–1750.CrossRefPubMedGoogle Scholar
  12. Giedd, J. N. (2004). Structural magnetic resonance imaging of the adolescent brain. Annals of the New York Academy of Sciences, 1021, 77–85.CrossRefPubMedGoogle Scholar
  13. Gogtay, N., Giedd, J. N., Lusk, L., Hayashi, K. M., Greenstein, D., Vaituzis, A. C., Nugent, T. F., Herman, D. H., Clasen, L. S., & Toga, A. W. (2004). Dynamic mapping of human cortical development during childhood through early adulthood. Proceedings of the National Academy of Sciences of the United States of America, 101, 8174–8179.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Goldstein, R. Z., Volkow, N. D. (2011). Dysfunction of the prefrontal cortex in addiction: neuroimaging findings and clinical implications. Nature Reviews Neuroscience, 12, 652–669.Google Scholar
  15. Han, X., Jovicich, J., Salat, D., van der Kouwe, A., Quinn, B., Czanner, S., Busa, E., Pacheco, J., Albert, M., & Killiany, R. (2006). Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. NeuroImage, 32, 180–194.CrossRefPubMedGoogle Scholar
  16. Han, D. H., Lyoo, I. K., & Renshaw, P. F. (2012). Differential regional gray matter volumes in patients with on-line game addiction and professional gamers. Journal of Psychiatric Research, 46, 507–515.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Jovicich, J., Czanner, S., Han, X., Salat, D., van der Kouwe, A., Quinn, B., Pacheco, J., Albert, M., Killiany, R., & Blacker, D. (2009). MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths. NeuroImage, 46, 177–192.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kuhn, S., Gleich, T., Lorenz, R. C., Lindenberger, U., & Gallinat, J. (2014). Playing super Mario induces structural brain plasticity: gray matter changes resulting from training with a commercial video game. Molecular Psychiatry, 19, 265–271.CrossRefPubMedGoogle Scholar
  19. Li, M., Tian, J., Zhang, R., Qiu, Y., Wen, X., Ma, X., Wang, J., Xu, Y., Jiang, G., & Huang, R. (2014). Abnormal cortical thickness in heroin-dependent individuals. NeuroImage, 88, 295–307.CrossRefPubMedGoogle Scholar
  20. Makris, N., Gasic, G. P., Kennedy, D. N., Hodge, S. M., Kaiser, J. R., Lee, M. J., Kim, B. W., Blood, A. J., Evins, A. E., & Seidman, L. J. (2008). Cortical thickness abnormalities in cocaine addiction—a reflection of both drug use and a pre-existing disposition to drug abuse? Neuron, 60, 174–188.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Medina, K. L., Schweinsburg, A. D., Cohen-Zion, M., Nagel, B. J., & Tapert, S. F. (2007). Effects of alcohol and combined marijuana and alcohol use during adolescence on hippocampal volume and asymmetry. Neurotoxicology and Teratology, 29, 141–152.CrossRefPubMedGoogle Scholar
  22. Medina, K. L., McQueeny, T., Nagel, B. J., Hanson, K. L., Schweinsburg, A. D., & Tapert, S. F. (2008). Prefrontal cortex volumes in adolescents with alcohol use disorders: unique gender effects. Alcoholism: Clinical and Experimental Research, 32, 386–394.CrossRefGoogle Scholar
  23. Mesulam, M.-M. (2002). The human frontal lobes: Transcending the default mode through contingent encoding. Principles of Frontal Lobe Function, 8–30.Google Scholar
  24. Mickiewicz, A. L., Dallimore, J. E., & Napier, T. C. (2009). The ventral pallidum is critically involved in the development and expression of morphine-induced sensitization. Neuropsychopharmacology, 34, 874–886.CrossRefPubMedGoogle Scholar
  25. Miller, S. (2005). Dextromethorphan psychosis, dependence and physical withdrawal. Addiction Biology, 10, 325–327.CrossRefPubMedGoogle Scholar
  26. Patton, J. H., Stanford, M. S., & Barratt, E. S. (1995). Factor structure of the Barratt impulsiveness scale. Journal of Clinical Psychology, 51, 768–774.CrossRefPubMedGoogle Scholar
  27. Qiu, Y. W., Jiang, G. H., Su, H. H., Lv, X. F., Tian, J. Z., Li, L. M., & Zhuo, F. Z. (2013). The impulsivity behavior is correlated with prefrontal cortex gray matter volume reduction in heroin-dependent individuals. Neuroscience Letters, 538, 43–48.CrossRefPubMedGoogle Scholar
  28. Qiu, Y. W., Lv, X. F., Jiang, G. H., Su, H. H., Yu, T., Tian, J. Z., Zhang, X. L., & Zhuo, F. Z. (2014). Reduced ventral medial prefrontal cortex (vmPFC) volume and impaired vmPFC-default mode network integration in codeine-containing cough syrups users. Drug and Alcohol Dependence, 134, 314–321.CrossRefPubMedGoogle Scholar
  29. Qiu, Y. W., Su, H. H., Lv, X. F., & Jiang, G. H. (2015). Abnormal white matter integrity in chronic users of codeine-containing cough syrups: a tract-based spatial statistics study. AJNR. American Journal of Neuroradiology, 36, 50–56.CrossRefPubMedGoogle Scholar
  30. Reid, A. G., Daglish, M. R., Kempton, M. J., Williams, T. M., Watson, B., Nutt, D. J., & Lingford-Hughes, A. R. (2008). Reduced thalamic grey matter volume in opioid dependence is influenced by degree of alcohol use: a voxel-based morphometry study. Journal of Psychopharmacology, 22, 7–10.CrossRefPubMedGoogle Scholar
  31. Russell, R. W. R. (1968). Regional development of the brain in early life. Proceedings of the Royal Society of Medicine, 61, 326–326.PubMedCentralGoogle Scholar
  32. Smolker, H., Depue, B., Reineberg, A., Orr, J., & Banich, M. (2014). Individual differences in regional prefrontal gray matter morphometry and fractional anisotropy are associated with different constructs of executive function. Brain Structure and Function, 220, 1291–1306.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Sowell, E. R., Thompson, P. M., Holmes, C. J., Jernigan, T. L., & Toga, A. W. (1999). In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nature Neuroscience, 2, 859–861.CrossRefPubMedGoogle Scholar
  34. Spear, L. P. (2002). Alcohol’s effects on adolescents. Alcohol Research and Health, 26, 287–291.PubMedGoogle Scholar
  35. Squeglia, L. M., Jacobus, J., & Tapert, S. F. (2009). The Influence of Substance Use on Adolescent Brain Development. Clinical EEG and Neuroscience : Official Journal of the EEG and Clinical Neuroscience Society (ENCS), 40, 31–38.CrossRefGoogle Scholar
  36. Walton, M. E., Behrens, T. E., Buckley, M. J., Rudebeck, P. H., & Rushworth, M. F. (2010). Separable learning systems in the macaque brain and the role of orbitofrontal cortex in contingent learning. Neuron, 65, 927–939.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Wu, Q., Yu, J., Yang, C., Chen, J., Yang, L., Zhang, H., Teng, S., Li, J., Yan, D., Cao, J., Zhao, Y., & Wang, Z. (2016). Nonmedical use of cough syrup among secondary vocational school students: a National Survey in China. Medicine, 95, e2969.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Yao, S., Yang, H., Zhu, X., Auerbach, R. P., Abela, J. R., Pulleyblank, R. W., & Tong, X. (2007). An examination of the psychometric properties of the Chinese version of the Barratt Impulsiveness Scale, 11th version in a sample of Chinese adolescents. Perceptual and Motor Skills, 104, 1169–1182.PubMedGoogle Scholar
  39. Yuan, K., Cheng, P., Dong, T., Bi, Y., Xing, L., Yu, D., Zhao, L., Dong, M., von Deneen, K. M., & Liu, Y. (2013). Cortical thickness abnormalities in late adolescence with online gaming addiction. PloS One, 8, e53055.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Yücel, M., Solowij, N., Respondek, C., Whittle, S., Fornito, A., Pantelis, C., & Lubman, D. I. (2008). Regional brain abnormalities associated with long-term heavy cannabis use. Archives of General Psychiatry, 65, 694–701.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Ying-wei Qiu
    • 1
    • 2
    • 3
  • Xiao-fei Lv
    • 4
  • Gui-hua Jiang
    • 2
  • Huan-Huan Su
    • 2
  • Xiao-fen Ma
    • 2
  • Jun-zhang Tian
    • 2
  • Fu-zhen Zhuo
    • 5
  1. 1.Department of Medical Imaging, Zhongshan Ophthalmic CenterSunYat-sen UniversityGuangzhouPeople’s Republic of China
  2. 2.Department of Medical ImagingGuangdong No.2 Provincial People’s HospitalGuangzhouPeople’s Republic of China
  3. 3.Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program, Duke-National University of Singapore Graduate Medical SchoolSingaporeSingapore
  4. 4.State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer MedicineSun Yat-sen University Cancer CenterGuangzhouPeople’s Republic of China
  5. 5.Addiction Medicine Division, Guangdong No.2 Provincial People’s HospitalGuangzhouPeople’s Republic of China

Personalised recommendations