Advertisement

Brain Imaging and Behavior

, Volume 11, Issue 5, pp 1432–1445 | Cite as

Functional connectivity abnormalities and associated cognitive deficits in fetal alcohol Spectrum disorders (FASD)

  • Jeffrey R. Wozniak
  • Bryon A. Mueller
  • Sarah N. Mattson
  • Claire D. Coles
  • Julie A. Kable
  • Kenneth L. Jones
  • Christopher J. Boys
  • Kelvin O. Lim
  • Edward P. Riley
  • Elizabeth R. Sowell
  • the CIFASD
Original Research

Abstract

Consistent with well-documented structural and microstructural abnormalities in prenatal alcohol exposure (PAE), recent studies suggest that functional connectivity (FC) may also be disrupted. We evaluated whole-brain FC in a large multi-site sample, examined its cognitive correlates, and explored its potential to objectively identify neurodevelopmental abnormality in individuals without definitive dysmorphic features. Included were 75 children with PAE and 68 controls from four sites. All participants had documented heavy prenatal alcohol exposure. All underwent a formal evaluation of physical anomalies and dysmorphic facial features. MRI data were collected using modified matched protocols on three platforms (Siemens, GE, and Philips). Resting-state FC was examined using whole-brain graph theory metrics to characterize each individual’s connectivity. Although whole-brain FC metrics did not discriminate prenatally-exposed from unexposed overall, atypical FC (> 1 standard deviation from the grand mean) was significantly more common (2.7 times) in the PAE group vs. controls. In a subset of 55 individuals (PAE and controls) whose dysmorphology examination could not definitively characterize them as either Fetal Alcohol Syndrome (FAS) or non-FAS, atypical FC was seen in 27 % of the PAE group, but 0 % of controls. Across participants, a 1 % difference in local network efficiency was associated with a 36 point difference in global cognitive functioning. Whole-brain FC metrics have potential to identify individuals with objective neurodevelopmental abnormalities from prenatal alcohol exposure. When applied to individuals unable to be classified as FAS or non-FAS from dysmorphology alone, these measures separate prenatally-exposed from non-exposed with high specificity.

Keywords

Fetal alcohol (FAS, FASD) Brain Functional MRI (fMRI), resting-state, connectivity Neuropsychology 

Notes

Acknowledgments

This work was performed in conjunction with the Collaborative Initiative on Fetal Alcohol Spectrum Disorders (CIFASD), which is funded by grants from the National Institute on Alcohol Abuse and Alcoholism (NIAAA). Additional information about CIFASD can be found at www.cifasd.org.

Compliance with ethical standards

Funding

This study was funded by the National Institute on Alcohol Abuse and Alcoholism (NIAAA). The following support was utilized in this work: NIAAA U01AA017122 (PI: ERS); NIAAA U01AA14834 (PI: SNM); U24AA014811 (EPR); U24AA014815 (PI: KLJ); U24AA014818 (PI: Barnett); support from the Minnesota Supercomputing Institute.

Conflict of interest

None of the authors has a relevant conflict of interest to disclose.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study. All procedures were reviewed and approved by local human subject’s protection programs. This article does not contain any studies with animals performed by any of the authors.

References

  1. Achard, S., & Bullmore, E. (2007). Efficiency and cost of economical brain functional networks. PLoS Comput Biol, 3(2), e17. doi: 10.1371/journal.pcbi.0030017.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Archibald, S. L., Fennema-Notestine, C., Gamst, A., Riley, E. P., Mattson, S. N., & Jernigan, T. L. (2001). Brain dysmorphology in individuals with severe prenatal alcohol exposure. Dev Med Child Neurol, 43(3), 148–154.CrossRefPubMedGoogle Scholar
  3. Bassett, D. S., & Bullmore, E. (2006). Small-world brain networks. Neuroscientist, 12(6), 512–523.CrossRefPubMedGoogle Scholar
  4. Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 57(1), 289–300.Google Scholar
  5. Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med, 34(4), 537–541.CrossRefPubMedGoogle Scholar
  6. Bookstein, F. L., Sampson, P. D., Streissguth, A. P., & Connor, P. D. (2001). Geometric morphometrics of corpus callosum and subcortical structures in the fetal-alcohol-affected brain. Teratology, 64(1), 4–32.CrossRefPubMedGoogle Scholar
  7. Bookstein, F. L., Sampson, P. D., Connor, P. D., & Streissguth, A. P. (2002). Midline corpus callosum is a neuroanatomical focus of fetal alcohol damage. Anat Rec, 269(3), 162–174.CrossRefPubMedGoogle Scholar
  8. Bookstein, F. L., Connor, P. D., Covell, K. D., Barr, H. M., Gleason, C. A., Sze, R. W., et al. (2005). Preliminary evidence that prenatal alcohol damage may be visible in averaged ultrasound images of the neonatal human corpus callosum. Alcohol, 36(3), 151–160. doi: 10.1016/j.alcohol.2005.07.007.CrossRefPubMedGoogle Scholar
  9. Bookstein, F. L., Connor, P. D., Huggins, J. E., Barr, H. M., Pimentel, K. D., & Streissguth, A. P. (2007). Many infants prenatally exposed to high levels of alcohol show one particular anomaly of the corpus callosum. Alcoholism, Clinical and Experimental Research, 31(5), 868–879. doi: 10.1111/j.1530–0277.2007.00367.x.CrossRefPubMedGoogle Scholar
  10. Bullmore, E., & Sporns, O. (2009). Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci, 10(3), 186–198. doi: 10.1038/nrn2575.CrossRefPubMedGoogle Scholar
  11. Cao, W., Li, W., Han, H., O’Leary-Moore, S. K., Sulik, K. K., Allan Johnson, G., et al. (2014). Prenatal alcohol exposure reduces magnetic susceptibility contrast and anisotropy in the white matter of mouse brains. Neuroimage, 102(Pt 2), 748–755. doi: 10.1016/j.neuroimage.2014.08.035.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159.CrossRefPubMedGoogle Scholar
  13. Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage, 9(2), 179–194.PubMedGoogle Scholar
  14. Delis, D. C., Kramer, J. H., Kaplan, E., & Ober, B. A. (1994). California Verbal Learning Test Manual, Children’s Version. San Antonio: The Psychological Corporation.Google Scholar
  15. Delis, D. C., Kaplan, E., & Kramer, J. H. (2001). Delis-Kaplan Executive Function System (D-KEFS). San Antonio, TX: Harcourt Assessment, Inc..Google Scholar
  16. Donald, K. A., Eastman, E., Howells, F. M., Adnams, C., Riley, E. P., Woods, R. P., et al. (2015a). Neuroimaging effects of prenatal alcohol exposure on the developing human brain: a magnetic resonance imaging review. Acta Neuropsychiatr, 27(5), 251–269. doi: 10.1017/neu.2015.12.CrossRefPubMedGoogle Scholar
  17. Donald, K. A., Roos, A., Fouche, J. P., Koen, N., Howells, F. M., Woods, R. P., et al. (2015b). A study of the effects of prenatal alcohol exposure on white matter microstructural integrity at birth. Acta Neuropsychiatr, 27(4), 197–205. doi: 10.1017/neu.2015.35.CrossRefPubMedGoogle Scholar
  18. Donald, K. A., Ipser, J. C., Howells, F. M., Roos, A., Fouche, J. P., Riley, E. P., et al. (2016). Interhemispheric functional brain connectivity in neonates with prenatal alcohol exposure: preliminary findings. Alcoholism, Clinical and Experimental Research, 40(1), 113–121. doi: 10.1111/acer.12930.CrossRefPubMedGoogle Scholar
  19. Elliott, C. D. (2007). Differential Ability Scales - Second Edition (DAS-II): Introductory and technical handbook. San Antonio, TX: PsychCorp.Google Scholar
  20. Fair, D. A., Cohen, A. L., Power, J. D., Dosenbach, N. U., Church, J. A., Miezin, F. M., et al. (2009). Functional brain networks develop from a "local to distributed" organization. PLoS Computational Biology, 5(5), e1000381. doi: 10.1371/journal.pcbi.1000381.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fan, J., Meintjes, E. M., Molteno, C. D., Spottiswoode, B. S., Dodge, N. C., Alhamud, A. A., et al. (2015). White matter integrity of the cerebellar peduncles as a mediator of effects of prenatal alcohol exposure on eyeblink conditioning. Human Brain Mapping, 36(7), 2470–2482. doi: 10.1002/hbm.22785.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Fryer, S. L., Schweinsburg, B. C., Bjorkquist, O. A., Frank, L. R., Mattson, S. N., Spadoni, A. D., et al. (2009). Characterization of white matter microstructure in fetal alcohol spectrum disorders. Alcoholism, Clinical and Experimental Research, 33(3), 514–521. doi: 10.1111/j.1530-0277.2008.00864.x.CrossRefPubMedGoogle Scholar
  23. Green, C. R., Mihic, A. M., Nikkel, S. M., Stade, B. C., Rasmussen, C., Munoz, D. P., et al. (2009). Executive function deficits in children with fetal alcohol spectrum disorders (FASD) measured using the Cambridge neuropsychological tests automated battery (CANTAB. Journal of Child Psychology and Psychiatry, 50(6), 688–697. doi: 10.1111/j.1469-7610.2008.01990.x.CrossRefPubMedGoogle Scholar
  24. Greve, D. N., & Fischl, B. (2009). Accurate and robust brain image alignment using boundary-based registration. Neuroimage, 48(1), 63–72. doi: 10.1016/j.neuroimage.2009.06.060.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Jacobson, S. W. (1998). Specificity of neurobehavioral outcomes associated with prenatal alcohol exposure. Alcoholism, Clinical and Experimental Research, 22(2), 313–320.CrossRefPubMedGoogle Scholar
  26. Jones, K. L., Robinson, L. K., Bakhireva, L. N., Marintcheva, G., Storojev, V., Strahova, A., et al. (2006). Accuracy of the diagnosis of physical features of fetal alcohol syndrome by pediatricians after specialized training. Pediatrics, 118(6), E1734–E1738. doi: 10.1542/peds.2006-1037.CrossRefPubMedGoogle Scholar
  27. Jones, K. L., Hoyme, H. E., Robinson, L. K., Del Campo, M., Manning, M. A., Prewitt, L. M., et al. (2010). Fetal alcohol spectrum disorders: extending the range of structural defects. American Journal of Medical Genetics. Part A, 152 A(11), 2731–2735. doi: 10.1002/ajmg.a.33675.CrossRefGoogle Scholar
  28. Korkman, M., Kirk, U., & Kemp, S. (2007). NEPSY-II (Second ed.). San Antonio, TX: PsychCorp.Google Scholar
  29. Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Phys Rev Lett, 87(19), 198701.CrossRefPubMedGoogle Scholar
  30. Lebel, C., Rasmussen, C., Wyper, K., Walker, L., Andrew, G., Yager, J., et al. (2008). Brain diffusion abnormalities in children with fetal alcohol spectrum disorder. Alcoholism, Clinical and Experimental Research, 32(10), 1732–1740. doi: 10.1111/j.1530-0277.2008.00750.x.CrossRefPubMedGoogle Scholar
  31. Lebel, C., Rasmussen, C., Wyper, K., Andrew, G., & Beaulieu, C. (2010). Brain microstructure is related to math ability in children with fetal alcohol spectrum disorder. Alcohol Clin Exp Res, 34(2), 354–363. doi: 10.1111/j.1530–0277.2009.01097.x.CrossRefPubMedGoogle Scholar
  32. Li, L., Coles, C. D., Lynch, M. E., & Hu, X. (2009). Voxelwise and skeleton-based region of interest analysis of fetal alcohol syndrome and fetal alcohol spectrum disorders in young adults. Hum Brain Mapp, 30(10), 3265–3274.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Ma, X., Coles, C. D., Lynch, M. E., Laconte, S. M., Zurkiya, O., Wang, D., et al. (2005). Evaluation of corpus callosum anisotropy in young adults with fetal alcohol syndrome according to diffusion tensor imaging. Alcoholism, Clinical and Experimental Research, 29(7), 1214–1222.CrossRefPubMedGoogle Scholar
  34. Malisza, K. L., Buss, J. L., Bolster, R. B., de Gervai, P. D., Woods-Frohlich, L., Summers, R., et al. (2012). Comparison of spatial working memory in children with prenatal alcohol exposure and those diagnosed with ADHD; a functional magnetic resonance imaging study. Journal of Neurodevelopmental Disorders, 4(1). doi: 10.1186/1866-1955-4-12.
  35. Mattson, S. N., Riley, E. P., Gramling, L., Delis, D. C., & Jones, K. L. (1997). Heavy prenatal alcohol exposure with or without physical features of fetal alcohol syndrome leads to IQ deficits. J Pediatr, 131(5), 718–721.CrossRefPubMedGoogle Scholar
  36. Mattson, S. N., Foroud, T., Sowell, E. R., Jones, K. L., Coles, C. D., Fagerlund, A., et al. (2010). Collaborative initiative on fetal alcohol spectrum disorders: methodology of clinical projects. Alcohol, 44(7–8), 635–641. doi: 10.1016/j.alcohol.2009.08.005.CrossRefPubMedGoogle Scholar
  37. Mattson, S. N., Roesch, S. C., Glass, L., Deweese, B. N., Coles, C. D., Kable, J. A., et al. (2013). Further development of a neurobehavioral profile of fetal alcohol spectrum disorders. Alcoholism, Clinical and Experimental Research, 37(3), 517–528. doi: 10.1111/j.1530-0277.2012.01952.x.CrossRefPubMedGoogle Scholar
  38. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage, 59(3), 2142–2154. doi: 10.1016/j.neuroimage.2011.10.018.CrossRefPubMedGoogle Scholar
  39. Raichle, M. E., & Snyder, A. Z. (2007). A default mode of brain function: a brief history of an evolving idea. Neuroimage, 37(4), 1083–1090 discussion 1097–1089.CrossRefPubMedGoogle Scholar
  40. Riley, E. P., Mattson, S. N., Sowell, E. R., Jernigan, T. L., Sobel, D. F., & Jones, K. L. (1995). Abnormalities of the corpus callosum in children prenatally exposed to alcohol. Alcohol Clin Exp Res, 19(5), 1198–1202.CrossRefPubMedGoogle Scholar
  41. Riley, E. P., McGee, C. L., & Sowell, E. R. (2004). Teratogenic effects of alcohol: a decade of brain imaging. Am J Med Genet C Semin Med Genet, 127(1), 35–41.CrossRefGoogle Scholar
  42. Roebuck, T. M., Mattson, S. N., & Riley, E. P. (2002). Interhemispheric transfer in children with heavy prenatal alcohol exposure. Alcohol Clin Exp Res, 26(12), 1863–1871.CrossRefPubMedGoogle Scholar
  43. Roussotte, F. F., Rudie, J. D., Smith, L., O’Connor, M. J., Bookheimer, S. Y., Narr, K. L., et al. (2012). Frontostriatal connectivity in children during working memory and the effects of prenatal methamphetamine, alcohol, and Polydrug exposure. Developmental Neuroscience, 34(1), 43–57. doi: 10.1159/000336242.CrossRefPubMedGoogle Scholar
  44. Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: uses and interpretations. Neuroimage, 52(3), 1059–1069. doi: 10.1016/j.neuroimage.2009.10.003.CrossRefPubMedGoogle Scholar
  45. Santhanam, P., Coles, C. D., Li, Z., Li, L., Lynch, M. E., & Hu, X. (2011). Default mode network dysfunction in adults with prenatal alcohol exposure. Psychiatry Res, 194(3), 354–362. doi: 10.1016/j.pscychresns.2011.05.004.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Shaffer, D., Fisher, P., Lucas, C. P., Dulcan, M. K., & Schwab-Stone, M. E. (2000). NIMH Diagnostic Interview Schedule for Children Version IV (NIMH DISC-IV): description, differences from previous versions, and reliability of some common diagnoses. J Am Acad Child Adolesc Psychiatry, 39(1), 28–38. doi: 10.1097/00004583–200001000-00014.CrossRefPubMedGoogle Scholar
  47. Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage, 23(Suppl 1), S208–S219. doi: 10.1016/j.neuroimage.2004.07.051.CrossRefPubMedGoogle Scholar
  48. Sowell, E. R., Mattson, S. N., Thompson, P. M., Jernigan, T. L., Riley, E. P., & Toga, A. W. (2001a). Mapping callosal morphology and cognitive correlates: Effects of heavy prenatal alcohol exposure. Neurology, 57(2), 235–244.CrossRefPubMedGoogle Scholar
  49. Sowell, E. R., Thompson, P. M., Mattson, S. N., Tessner, K. D., Jernigan, T. L., Riley, E. P., et al. (2001b). Voxel-based morphometric analyses of the brain in children and adolescents prenatally exposed to alcohol. Neuroreport, 12(3), 515–523.CrossRefPubMedGoogle Scholar
  50. Sowell, E. R., Johnson, A., Kan, E., Lu, L. H., Van Horn, J. D., Toga, A. W., et al. (2008). Mapping white matter integrity and neurobehavioral correlates in children with fetal alcohol spectrum disorders. The Journal of Neuroscience, 28(6), 1313–1319. doi: 10.1523/JNEUROSCI.5067-07.2008.CrossRefPubMedPubMedCentralGoogle Scholar
  51. Sowell, E. R., Leow, A. D., Bookheimer, S. Y., Smith, L. M., O’Connor, M. J., Kan, E., et al. (2010). Differentiating prenatal exposure to methamphetamine and alcohol versus alcohol and not methamphetamine using tensor-based brain morphometry and discriminant analysis. The Journal of Neuroscience, 30(11), 3876–3885. doi: 10.1523/JNEUROSCI.4967-09.2010.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Spottiswoode, B. S., Meintjes, E. M., Anderson, A. W., Molteno, C. D., Stanton, M. E., Dodge, N. C., et al. (2011). Diffusion tensor imaging of the cerebellum and eyeblink conditioning in fetal alcohol spectrum disorder. Alcoholism, Clinical and Experimental Research, 35(12), 2174–2183. doi: 10.1111/j.1530-0277.2011.01566.x.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Streissguth, A. P., & O’Malley, K. (2000). Neuropsychiatric implications and long-term consequences of fetal alcohol spectrum disorders. Semin Clin Neuropsychiatry, 5(3), 177–190.CrossRefPubMedGoogle Scholar
  54. Tambini, A., Ketz, N., & Davachi, L. (2010). Enhanced brain correlations during rest are related to memory for recent experiences. Neuron, 65(2), 280–290. doi: 10.1016/j.neuron.2010.01.001.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Taylor, P. A., Jacobson, S. W., van der Kouwe, A., Molteno, C. D., Chen, G., Wintermark, P., et al. (2015). A DTI-based tractography study of effects on brain structure associated with prenatal alcohol exposure in newborns. Human Brain Mapping, 36(1), 170–186. doi: 10.1002/hbm.22620.CrossRefPubMedGoogle Scholar
  56. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440–442. doi: 10.1038/30918.CrossRefPubMedGoogle Scholar
  57. Woolrich, M. W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., Behrens, T., et al. (2009). Bayesian analysis of neuroimaging data in FSL. Neuroimage, 45(1 Suppl), S173–S186. doi: 10.1016/j.neuroimage.2008.10.055.CrossRefPubMedGoogle Scholar
  58. Wozniak, J. R., & Muetzel, R. L. (2011). What does diffusion tensor imaging reveal about the brain and cognition in fetal alcohol spectrum disorders? Neuropsychology Review, 21(2), 133–147. doi: 10.1007/s11065–011–9162-1.CrossRefPubMedGoogle Scholar
  59. Wozniak, J. R., Mueller, B. A., Chang, P. N., Muetzel, R. L., Caros, L., & Lim, K. O. (2006). Diffusion tensor imaging in children with fetal alcohol spectrum disorders. Alcohol Clin Exp Res, 30, 1799–1806. doi: 10.1111/j.1530–0277.2006.00213.x.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Wozniak, J. R., Muetzel, R. L., Mueller, B. A., McGee, C. L., Freerks, M. A., Ward, E. E., et al. (2009). Microstructural corpus callosum anomalies in children with prenatal alcohol exposure: an extension of previous diffusion tensor imaging findings. Alcoholism, Clinical and Experimental Research, 33(10), 1825–1835. doi: 10.1111/j.1530-0277.2009.01021.x.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wozniak, J. R., Mueller, B. A., Muetzel, R. L., Bell, C. J., Hoecker, H. L., Nelson, M. L., et al. (2011). Inter-hemispheric functional connectivity disruption in children with prenatal alcohol exposure. Alcoholism, Clinical and Experimental Research, 35(5), 849–861. doi: 10.1111/j.1530-0277.2010.01415.x.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Wozniak, J. R., Mueller, B. A., Bell, C. J., Muetzel, R. L., Hoecker, H. L., Boys, C. J., et al. (2013). Global functional connectivity abnormalities in children with fetal alcohol spectrum disorders. Alcoholism, Clinical and Experimental Research, 37(5), 748–756. doi: 10.1111/acer.12024.CrossRefPubMedGoogle Scholar
  63. Wu, K., Taki, Y., Sato, K., Hashizume, H., Sassa, Y., Takeuchi, H., et al. (2013). Topological organization of functional brain networks in healthy children: differences in relation to age, sex, and intelligence. PloS One, 8(2), e55347. doi: 10.1371/journal.pone.0055347.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jeffrey R. Wozniak
    • 1
  • Bryon A. Mueller
    • 1
  • Sarah N. Mattson
    • 3
  • Claire D. Coles
    • 4
  • Julie A. Kable
    • 4
  • Kenneth L. Jones
    • 5
  • Christopher J. Boys
    • 1
  • Kelvin O. Lim
    • 1
  • Edward P. Riley
    • 3
  • Elizabeth R. Sowell
    • 2
  • the CIFASD
  1. 1.Department of PsychiatryUniversity of Minnesota Twin CitiesMinneapolisUSA
  2. 2.Children’s Hospital of Los AngelesUniversity of Southern CaliforniaLos AngelesUSA
  3. 3.San Diego State UniversitySan DiegoUSA
  4. 4.Emory UniversityAtlantaUSA
  5. 5.University of California, San DiegoLa JollaUSA

Personalised recommendations