Skip to main content

Advertisement

Log in

Relationships between years of education, regional grey matter volumes, and working memory-related brain activity in healthy older adults

  • SI: Resilience/Reserve in AD
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

The aim of this study was to examine the relationships between educational attainment, regional grey matter volume, and functional working memory-related brain activation in older adults. The final sample included 32 healthy older adults with 8 to 22 years of education. Structural magnetic resonance imaging (MRI) was used to measure regional volume and functional MRI was used to measure activation associated with performing an n-back task. A positive correlation was found between years of education and cortical grey matter volume in the right medial and middle frontal gyri, in the middle and posterior cingulate gyri, and in the right inferior parietal lobule. The education by age interaction was significant for cortical grey matter volume in the left middle frontal gyrus and in the right medial cingulate gyrus. In this region, the volume loss related to age was larger in the low than high-education group. The education by age interaction was also significant for task-related activity in the left superior, middle and medial frontal gyri due to the fact that activation increased with age in those with higher education. No correlation was found between regions that are structurally related with education and those that are functionally related with education and age. The data suggest a protective effect of education on cortical volume. Furthermore, the brain regions involved in the working memory network are getting more activated with age in those with higher educational attainment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adam, S., Bonsang, E., Grotz, C., & Perelman, S. (2013). Occupational activity and cognitive reserve: implications in terms of prevention of cognitive aging and Alzheimer’s disease. Clinical Interventions in Aging, 8, 377–390.

    Article  PubMed  PubMed Central  Google Scholar 

  • Adjutant General’s Office (1944). Army individual test battery: Manual of directions and scoring. Washington: War Department.

    Google Scholar 

  • Arenaza-Urquijo, E. M., Landeau, B., La Joie, R., Mevel, K., Mézenge, F., Perrotin, A., & Chételat, G. (2013). Relationships between years of education and gray matter volume, metabolism and functional connectivity in healthy elders. NeuroImage, 83, 450–457.

    Article  PubMed  Google Scholar 

  • Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95–113.

    Article  PubMed  Google Scholar 

  • Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry: the methods. NeuroImage, 11(6 Pt 1), 805–821.

    Article  CAS  PubMed  Google Scholar 

  • Ashburner, J., & Friston, K. J. (2005). Unified segmentation. NeuroImage, 26(3), 839–851.

    Article  PubMed  Google Scholar 

  • Barbey, A. K., Koenigs, M., & Grafman, J. (2013). Dorsolateral Prefrontal Contributions to Human Working Memory. Cortex, 49(5), 1195–1205.

    Article  PubMed  Google Scholar 

  • Bartrés-Faz, D., Solé-Padullés, C., Junqué, C., Rami, L., Bosch, B., Bargalló, N., & Molinuevo, J. L. (2009). Interactions of cognitive reserve with regional brain anatomy and brain function during a working memory task in healthy elders. Biological Psychology, 80(2), 256–259.

    Article  PubMed  Google Scholar 

  • Belleville, S., Mellah, S., de Boysson, C., Demonet, J.-F., & Bier, B. (2014). The pattern and loci of training-induced brain changes in healthy older adults are predicted by the nature of the intervention. PloS One, 9(8), e102710.

    Article  PubMed  PubMed Central  Google Scholar 

  • Borella, E., Carretti, B., & De Beni, R. (2008). Working memory and inhibition across the adult life-span. Acta Psychologica, 128, 33–44.

    Article  PubMed  Google Scholar 

  • Braver, T. S., Cohen, J. D., Nystrom, L. E., Jonides, J., Smith, E. E., & Noll, D. C. (1997). A parametric study of prefrontal cortex involvement in human working memory. NeuroImage, 5(1), 49–62.

    Article  CAS  PubMed  Google Scholar 

  • Brett, M., Anton, J. L., Valabregue, R., & Poline, J. B. (2002). Region of interest analysis using the MarsBar toolbox for SPM 99. NeuroImage, 16(2), S497.

    Google Scholar 

  • Cabeza, R. (2002). Hemispheric asymmetry reduction in older adults: the HAROLD model. Psychology and Aging, 17(1), 85–100.

    Article  PubMed  Google Scholar 

  • Callicott, J. H., Mattay, V. S., Bertolino, A., Finn, K., Coppola, R., Frank, J. A., et al. (1999). Physiological characteristics of capacity constraints in working memory as revealed by functional MRI. Cerebral Cortex, 9(1), 20–26.

    Article  CAS  PubMed  Google Scholar 

  • Cappell, K. A., Gmeindl, L., & Reuter-Lorenz, P. A. (2010). Age differences in prefontal recruitment during verbal working memory maintenance depend on memory load. Cortex, 46(4), 462–473.

    Article  PubMed  Google Scholar 

  • Casanova, R., Srikanth, R., Baer, A., Laurienti, P. J., Burdette, J. H., Hayasaka, S., et al. (2007). Biological parametric mapping: A statistical toolbox for multimodality brain image analysis. NeuroImage, 34(1), 137–143.

    Article  PubMed  Google Scholar 

  • Christensen, H., Batterham, P. J., Mackinnon, A. J., Anstey, K. J., Wen, W., & Sachdev, P. S. (2009). Education, atrophy, and cognitive change in an epidemiological sample in early old age. The American Journal of Geriatric Psychiatry, 17(3), 218–226.

    Article  PubMed  Google Scholar 

  • Coffey, C. E., Saxton, J. A., Ratcliff, G., Bryan, R. N., & Lucke, J. F. (1999). Relation of education to brain size in normal aging: implications for the reserve hypothesis. Neurology, 53(1), 189–196.

    Article  CAS  PubMed  Google Scholar 

  • Cordière, A., Cloutier, S., & Belleville, S. (2016). Protective effects of early-life and late-life cognitive experiences on the age-related decline of working memory. Manuscript submitted for publication.

  • Curiati, P. K., Tamashiro, J. H., Squarzoni, P., Duran, F. L. S., Santos, L. C., Wajngarten, M., & Alves, T. C. T. F. (2009). Brain structural variability due to aging and gender in cognitively healthy elders: results from the Sao Paulo ageing and health study. American Journal of Neuroradiology, 30(10), 1850–1856.

    Article  CAS  PubMed  Google Scholar 

  • Dobbs, A. R., & Rule, B. G. (1989). Adult age differences in working memory. Psychology and Aging, 4, 500–503.

    Article  CAS  PubMed  Google Scholar 

  • Foos, P. W., & Wright, L. (1992). Adult age differences in the storage of information in working memory. Experimental Aging Research, 18, 51–57.

    Article  CAS  PubMed  Google Scholar 

  • Foubert-Samier, A., Catheline, G., Amieva, H., Dilharreguy, B., Helmer, C., Allard, M., & Dartigues, J.-F. (2012). Education, occupation, leisure activities, and brain reserve: a population-based study. Neurobiology of Aging, 33(2), 423.e15–423.e25.

    Article  Google Scholar 

  • Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N., Friston, K. J., & Frackowiak, R. S. (2001). A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage, 14(1 Pt 1), 21–36.

    Article  CAS  PubMed  Google Scholar 

  • Habeck, C., Hilton, H. J., Zarahn, E., Flynn, J., Moeller, J., & Stern, Y. (2003). Relation of cognitive reserve and task performance to expression of regional covariance networks in an event-related fMRI study of nonverbal memory. NeuroImage, 20(3), 1723–1733.

    Article  PubMed  Google Scholar 

  • Hale, S., Rose, N. S., Myerson, J., Strube, M. J., Sommers, M., Tye-Murray, N., & Spehar, B. (2011). The structure of working memory abilities across the adult life span. Psychology and Aging, 26, 92–110.

    Article  PubMed  PubMed Central  Google Scholar 

  • Haut, M. W., Kuwabara, H., Moran, M. T., Leach, S., Arias, R., & Knight, D. (2005). The effect of education on age-related functional activation during working memory. Aging, Neuropsychology, and Cognition, 12(2), 216–229.

    Article  Google Scholar 

  • Jonides, J., Schumacher, E. H., Smith, E. E., Lauber, E. J., Awh, E., Minoshima, S., & Koeppe, R. A. (1997). Verbal Working Memory Load Affects Regional Brain Activation as Measured by PET. Journal of Cognitive Neuroscience, 9(4), 462–475.

    Article  CAS  PubMed  Google Scholar 

  • Kalpouzos, G., Chételat, G., Baron, J.-C., Landeau, B., Mevel, K., Godeau, C., & Desgranges, B. (2009). Voxel-based mapping of brain gray matter volume and glucose metabolism profiles in normal aging. Neurobiology of Aging, 30(1), 112–124.

    Article  CAS  PubMed  Google Scholar 

  • Katzman, R. (1993). Education and the prevalence of dementia and Alzheimer’s disease. Neurology, 43, 13–20.

    Article  CAS  PubMed  Google Scholar 

  • Kidron, D., Black, S. E., Stanchev, P., Buck, B., Szalai, J. P., Parker, J., & Bronskill, M. J. (1997). Quantitative MR volumetry in Alzheimer’s disease. Topographic markers and the effects of sex and education. Neurology, 49(6), 1504–1512.

    Article  CAS  PubMed  Google Scholar 

  • Klein, A., Andersson, J., Ardekani, B. A., Ashburner, J., Avants, B., Chiang, M.-C., & Parsey, R. V. (2009). Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage, 46(3), 786–802.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, H.-J., Hou, X.-H., Liu, H.-H., Yue, C.-L., Lu, G.-M., & Zuo, X.-N. (2015). Putting age-related task activation into large-scale brain networks: A meta-analysis of 114 fMRI studies on healthy aging. Neuroscience & Biobehavioral Reviews, 57, 156–174.

    Article  Google Scholar 

  • Matsuda, H. (2013). Voxel-based morphometry of brain MRI in normal aging and Alzheimer’s disease. Aging and Disease, 4(1), 29–37.

    PubMed  Google Scholar 

  • Mattay, V. S., Fera, F., Tessitore, A., Hariri, A. R., Berman, K. F., Das, S., & Weinberger, D. R. (2006). Neurophysiological correlates of age-related changes in working memory capacity. Neuroscience Letters, 392(1–2), 32–37.

    Article  CAS  PubMed  Google Scholar 

  • Nagel, I. E., Preuschhof, C., Li, S.-C., Nyberg, L., Bäckman, L., Lindenberger, U., & Heekeren, H. R. (2009). Performance level modulates adult age differences in brain activation during spatial working memory. Proceedings of the National Academy of Sciences of the United States of America, 106(52), 22552–22557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., & Chertkow, H. (2005). The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695–699.

    Article  PubMed  Google Scholar 

  • Nyberg, L., Lövdén, M., Riklund, K., Lindenberger, U., & Bäckman, L. (2012). Memory aging and brain maintenance. Trends in Cognitive Sciences, 16(5), 292–305.

    Article  PubMed  Google Scholar 

  • Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25(1), 46–59.

    Article  PubMed  Google Scholar 

  • Reuter-Lorenz, P. (2002). New visions of the aging mind and brain. Trends in Cognitive Sciences, 6(9), 394.

    Article  PubMed  Google Scholar 

  • Reuter-Lorenz, P. A., & Cappell, K. A. (2008). Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science, 17(3), 177–182.

    Article  Google Scholar 

  • Reuter-Lorenz, P. A., Jonides, J., Smith, E. E., Hartley, A., Miller, A., Marshuetz, C., & Koeppe, R. A. (2000). Age differences in the frontal lateralization of verbal and spatial working memory revealed by PET. Journal of Cognitive Neuroscience, 12(1), 174–187.

    Article  CAS  PubMed  Google Scholar 

  • Ridgway, G. R., Omar, R., Ourselin, S., Hill, D. L. G., Warren, J. D., & Fox, N. C. (2009). Issues with threshold masking in voxel-based morphometry of atrophied brains. NeuroImage, 44(1), 99–111.

    Article  PubMed  Google Scholar 

  • Rossetti, H. C., Lacritz, L. H., Cullum, C. M., & Weiner, M. F. (2011). Normative data for the Montreal Cognitive Assessment (MoCA) in a population-based sample. Neurology, 77(13), 1272–1275.

    Article  PubMed  Google Scholar 

  • Rypma, B., & D’Esposito, M. (2000). Isolating the neural mechanisms of age-related changes in human working memory. Nature Neuroscience, 3(5), 509–515.

    Article  CAS  PubMed  Google Scholar 

  • Rzezak, P., Squarzoni, P., Duran, F. L., Alves, T. D. T. F., Tamashiro-Duran, J., Bottino, C. M., & Busatto, G. F. (2015). Relationship between Brain Age-Related Reduction in Gray Matter and Educational Attainment. PloS One, 10(10), e0140945.

    Article  PubMed  PubMed Central  Google Scholar 

  • Salthouse, T. A., Babcock, R. L., & Shaw, R. J. (1991). Effects of adult age on structural and operational capacities in working memory. Psychology and Aging, 6(1), 118–127.

    Article  CAS  PubMed  Google Scholar 

  • Satz, P. (1993). Brain reserve capacity on symptom onset after brain injury: a formulation and review of evidence for threshold theory. Neuropsychology, 7, 273–295.

    Article  Google Scholar 

  • Scarmeas, N., Zarahn, E., Anderson, K. E., Hilton, J., Flynn, J., Van Heertum, R. L., & Stern, Y. (2003). Cognitive reserve modulates functional brain responses during memory tasks: a PET study in healthy young and elderly subjects. NeuroImage, 19(3), 1215–1227.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schneider-Garces, N. J., Gordon, B. A., Brumback-Peltz, C. R., Shin, E., Lee, Y., Sutton, B. P., & Fabiani, M. (2010). Span, CRUNCH, and beyond: working memory capacity and the aging brain. Journal of Cognitive Neuroscience, 22(4), 655–669.

    Article  PubMed  PubMed Central  Google Scholar 

  • Snodgrass, J. G., & Corwin, J. (1988). Pragmatics of measuring recognition memory: Applications to dementia and amnesia. Journal of Experimental Psychology: General, 117, 34–50.

    Article  CAS  Google Scholar 

  • Solé-Padullés, C., Bartrés-Faz, D., Junqué, C., Vendrell, P., Rami, L., Clemente, I. C., & Molinuevo, J. L. (2009). Brain structure and function related to cognitive reserve variables in normal aging, mild cognitive impairment and Alzheimer’s disease. Neurobiology of Aging, 30(7), 1114–1124.

    Article  PubMed  Google Scholar 

  • Sowell, E. R., Peterson, B. S., Thompson, P. M., Welcome, S. E., Henkenius, A. L., & Toga, A. W. (2003). Mapping cortical change across the human life span. Nature Neuroscience, 6(3), 309–315.

    Article  CAS  PubMed  Google Scholar 

  • Springer, M. V., McIntosh, A. R., Winocur, G., & Grady, C. L. (2005). The relation between brain activity during memory tasks and years of education in young and older adults. Neuropsychology, 19(2), 181–192.

    Article  PubMed  Google Scholar 

  • Steffener, J., Habeck, C., O’Shea, D., Razlighi, Q., Bherer, L., & Stern, Y. (2016). Differences between chronological and brain age are related to education and self-reported physical activity. Neurobiology of Aging, 40, 138–144.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8(3), 448–460.

    Article  PubMed  Google Scholar 

  • Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47, 2015–2028.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurology, 11, 1006–1012.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stern, Y., Habeck, C., Moeller, J., Scarmeas, N., Anderson, K. E., Hilton, H. J., et al. (2005). Brain networks associated with cognitive reserve in healthy young and old adults. Cerebral Cortex, 15(4), 394–402.

    Article  PubMed  PubMed Central  Google Scholar 

  • Terribilli, D., Schaufelberger, M. S., Duran, F. L. S., Zanetti, M. V., Curiati, P. K., Menezes, P. R., et al. (2011). Age-related gray matter volume changes in the brain during non-elderly adulthood. Neurobiology of Aging, 32(2), 354–368.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wechsler, D. (1997). Wechsler Adult Intelligence Scale - (Third ed.). New-York: The Psychological Corporation.

    Google Scholar 

  • Wingfield, A., Stine, E. A., Lahar, C. J., & Aberdeen, J. S. (1988). Does the capacity of working memory change with age? Experimental Aging Research, 14(2–3), 103–107.

    Article  CAS  PubMed  Google Scholar 

  • Yang, X., Beason-Held, L., Resnick, S. M., & Landman, B. A. (2011). Biological parametric mapping with robust and non-parametric statistics. NeuroImage, 57(2), 423–430.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yesavage, J. A., Brink, T. L., Rose, T. L., Lum, O., Huang, V., Adey, M. B., & Leirer, V. O. (1983). Development and validation of a geriatric depression screening scale: A preliminary report. Journal of Psychiatric Research, 17, 37–49.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant to S.B. from the Natural Sciences and Engineering Research Council of Canada (NSERC). B.B. was supported by postdoctoral fellowships from the Fondation Institut de Gériatrie de Montréal and the Fondation Lemaire. Authors would like to thank Bianca Bier, Chloé de Boysson, and Emilie Lepage for their help in testing participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Belleville.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boller, B., Mellah, S., Ducharme-Laliberté, G. et al. Relationships between years of education, regional grey matter volumes, and working memory-related brain activity in healthy older adults. Brain Imaging and Behavior 11, 304–317 (2017). https://doi.org/10.1007/s11682-016-9621-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-016-9621-7

Keywords

Navigation