Brain Imaging and Behavior

, Volume 11, Issue 6, pp 1652–1663 | Cite as

Brain structure and function in patients with ovarian cancer treated with first-line chemotherapy: a pilot study

  • D. D. CorreaEmail author
  • J. C. Root
  • M. Kryza-Lacombe
  • M. Mehta
  • S. Karimi
  • M. L. Hensley
  • N. Relkin
Original Research


Women with ovarian cancer often undergo chemotherapy involving multiple agents. However, little is known about treatment-related central neurotoxicity in this population. The goal of this cross-sectional study was to assess brain structure and function and neurocognitive abilities in patients with ovarian cancer following first-line chemotherapy. Eighteen patients with ovarian, peritoneal and fallopian tube cancer and eighteen healthy controls matched for gender, age and education participated in the study. The patients were evaluated 1–4 months following completion of first-line taxane/platinum chemotherapy. All participants underwent structural and functional magnetic resonance imaging (MRI), and completed neuropsychological tests of attention, memory and executive functions. Neuroimaging assessments included voxel-based morphometry (VBM) for measuring gray matter (GM) volume, and functional MRI (fMRI) during the N-back working memory task. The results of VBM showed that patients had significantly reduced GM volume compared to healthy controls in the right middle/superior frontal gyrus, and in the left supramarginal gyrus and left inferior parietal lobule. fMRI results indicated significantly decreased activation in patients relative to healthy controls in the left middle frontal gyrus and left inferior parietal lobule during the N-back task (1/2/3-back >0-back). There were no statistically significant differences between the two groups on the neuropsychological tests. This is the first study showing structural and functional alterations involving frontal and parietal regions in patients with ovarian cancer treated with first-line chemotherapy. These findings are congruent with studies involving women with breast cancer, and provide additional supporting evidence for central neurotoxicity associated with taxane/platinum chemotherapy.


Ovarian cancer Chemotherapy Cognitive MRI fMRI 



This study was funded by the Leon Levy Foundation.

Compliance with ethical standards

Conflict of interest

Dr. Correa serves on the Editorial Board of Neuro-Oncology Practice and on the Neurotoxicity Advisory Board for Juno Therapeutics.

Dr. Root reports no conflicts of interest.

Ms. Kryza-Lacombe reports no conflicts of interest.

Ms. Mehta reports no conflicts of interest.

Dr. Karimi reports no conflicts of interest.

Dr. Hensley reports no conflicts of interest.

Dr. Relkin has received remuneration from Eisai, HerbalScience Group, Anavex and Forest for consulting services. He has served as an investigator in clinical trials sponsored by the NIH, DOD, Baxter, Merck, Lilly and Eisai. He is a past recipient of grant support from the Leon Levy Foundation.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. Ahles, T. A., & Saykin, A. J. (2007). Candidate mechanisms for chemotherapy-induced cognitive changes. Nature Reviews Cancer, 7(3), 192–201.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ahles, T. A., Saykin, A. J., Furstenberg, C. T., Cole, B., Mott, L. A., Skalla, K., et al. (2002). Neuropsychologic impact of standard-dose systemic chemotherapy in long-term survivors of breast cancer and lymphoma. Journal of Clinical Oncology, 20(2), 485–493.CrossRefPubMedGoogle Scholar
  3. Ahles, T. A., Saykin, A. J., Noll, W. W., Furstenberg, C. T., Guerin, S., Cole, B., et al. (2003). The relationship of APOE genotype to neuropsychological performance in long-term cancer survivors treated with standard dose chemotherapy. Psychooncology, 12(6), 612–619.CrossRefPubMedGoogle Scholar
  4. Ahles, T. A., Saykin, A. J., McDonald, B. C., Li, Y., Furstenberg, C. T., Hanscom, B. S., et al. (2010). Longitudinal assessment of cognitive changes associated with adjuvant treatment for breast cancer: impact of age and cognitive reserve. Journal of Clinical Oncology, 28(29), 4434–4440.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ahles, T. A., Root, J. C., & Ryan, E. L. (2012). Cancer- and cancer treatment-associated cognitive change: an update on the state of the science. Journal of Clinical Oncology, 30(30), 3675–3686.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Barona, A., Reynolds, C. R., & Chastain, R. (1984). A demographically based index of premorbid intelligence for the WAIS-R. Journal of Consulting and Clinical Psychology, 52(5), 885–887.CrossRefGoogle Scholar
  7. Basen-Engquist, K., Bodurka-Bevers, D., Fitzgerald, M. A., Webster, K., Cella, D., Hu, S., et al. (2001). Reliability and validity of the functional assessment of cancer therapy-ovarian. Journal of Clinical Oncology, 19(6), 1809–1817.CrossRefPubMedGoogle Scholar
  8. Benton, L., Hamsher, K., & Sivan, A. (1983). Controlled oral word association test. Multilingual aphasia examination (3rd ed.). San Antonio: Psychological Corporation.Google Scholar
  9. Blair, J. R., & Spreen, O. (1989). Predicting premorbid IQ: a revision of the national adult reading test. The Clinical Neuropsychologist, 3(2), 129–136.CrossRefGoogle Scholar
  10. Braga, R. M., Sharp, D. J., Leeson, C., Wise, R. J., & Leech, R. (2013). Echoes of the brain within default mode, association, and heteromodal cortices. Journal of Neuroscience, 33(35), 14031–14039.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Brewer, J. R., Morrison, G., Dolan, M. E., & Fleming, G. F. (2016). Chemotherapy-induced peripheral neuropathy: Current status and progress. Gynecologic Oncology, 140(1), 176–183.CrossRefPubMedGoogle Scholar
  12. Brezden, C. B., Phillips, K. A., Abdolell, M., Bunston, T., & Tannock, I. F. (2000). Cognitive function in breast cancer patients receiving adjuvant chemotherapy. Journal of Clinical Oncology, 18(14), 2695–2701.CrossRefPubMedGoogle Scholar
  13. Cella, D. (1997). Functional Assessment of Chronic Illness Therapy (FACIT) Measurement System. Evanston: Research and Education Core, Evanston Northwestern Healthcare.Google Scholar
  14. Collins, B., Mackenzie, J., Tasca, G. A., Scherling, C., & Smith, A. (2013). Persistent Cognitive Changes in Breast Cancer Patients 1 Year Following Completion of Chemotherapy. Journal of the International Neuropsychological Society, 20(04), 370–379.CrossRefPubMedGoogle Scholar
  15. Conroy, S. K., McDonald, B. C., Smith, D. J., Moser, L. R., West, J. D., Kamendulis, L. M., et al. (2013). Alterations in brain structure and function in breast cancer survivors: effect of post-chemotherapy interval and relation to oxidative DNA damage. Breast Cancer Research and Treatment, 137(2), 493–502.CrossRefPubMedGoogle Scholar
  16. Correa, D. D., & Ahles, T. A. (2008). Neurocognitive changes in cancer survivors. Cancer Journal, 14(6), 396–400.CrossRefGoogle Scholar
  17. Correa, D. D., DeAngelis, L. M., Shi, W., Thaler, H. T., Lin, M., & Abrey, L. E. (2007). Cognitive functions in low-grade gliomas: disease and treatment effects. Journal of Neurooncology, 81(2), 175–184.CrossRefGoogle Scholar
  18. Correa, D. D., Zhou, Q., Thaler, H. T., Maziarz, M., Hurley, K., & Hensley, M. L. (2010). Cognitive functions in long-term survivors of ovarian cancer. Gynecologic Oncology, 119(2), 366–369.CrossRefPubMedGoogle Scholar
  19. Correa, D. D., Satagopan, J., Baser, R. E., Cheung, K., Richards, E., Lin, M., et al. (2014). APOE polymorphisms and cognitive functions in patients with brain tumors. Neurology, 83(4), 320–327.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Correa, D. D., Satagopan, J., Cheung, K., Arora, A. K., Kryza-Lacombe, M., Xu, Y., et al. (2016). COMT, BDNF, and DTNBP1 polymorphisms and cognitive functions in patients with brain tumors. Neuro-Oncology, 2016. doi: 10.1093/neuonc/now057.
  21. de Ruiter, M. B., Reneman, L., Boogerd, W., Veltman, D. J., van Dam, F. S., Nederveen, A. J., et al. (2011). Cerebral hyporesponsiveness and cognitive impairment 10 years after chemotherapy for breast cancer. Human Brain Mapping, 32(8), 1206–1219.CrossRefPubMedGoogle Scholar
  22. de Ruiter, M. B., Reneman, L., Boogerd, W., Veltman, D. J., Caan, M., Douaud, G., et al. (2012). Late effects of high-dose adjuvant chemotherapy on white and gray matter in breast cancer survivors: converging results from multimodal magnetic resonance imaging. Human Brain Mapping, 33(12), 2971–2983.CrossRefPubMedGoogle Scholar
  23. Delis, D., Kramer, J., Kaplan, E., & Ober, B. (2000). CVLT-II. New York: The Psychological Corporation.Google Scholar
  24. Deprez, S., Billiet, T., Sunaert, S., & Leemans, A. (2013). Diffusion tensor MRI of chemotherapy-induced cognitive impairment in non-CNS cancer patients: a review. Brain Imaging and Behavior, 7(4), 409–435.CrossRefPubMedGoogle Scholar
  25. Deprez, S., Vandenbulcke, M., Peeters, R., Emsell, L., Smeets, A., Christiaens, M. R., et al. (2014). Longitudinal assessment of chemotherapy-induced alterations in brain activation during multitasking and its relation with cognitive complaints. Journal of Clinical Oncology, 32(19), 2031–2038.CrossRefPubMedGoogle Scholar
  26. Dietrich, J., Han, R., Yang, Y., Mayer-Proschel, M., & Noble, M. (2006). CNS progenitor cells and oligodendrocytes are targets of chemotherapeutic agents in vitro and in vivo. Journal of Biology, 5(7), 1–23.CrossRefGoogle Scholar
  27. Donovan, K. A., Small, B. J., Andrykowski, M. A., Schmitt, F. A., Munster, P., & Jacobsen, P. B. (2005). Cognitive functioning after adjuvant chemotherapy and/or radiotherapy for early-stage breast carcinoma. Cancer, 104(11), 2499–2507.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Eberling, J. L., Wu, C., Tong-Turnbeaugh, R., & Jagust, W. J. (2004). Estrogen- and tamoxifen-associated effects on brain structure and function. NeuroImage, 21(1), 364–371.CrossRefPubMedGoogle Scholar
  29. Ferguson, R. J., McDonald, B. C., Saykin, A. J., & Ahles, T. A. (2007). Brain structure and function differences in monozygotic twins: possible effects of breast cancer chemotherapy. Journal of Clinical Oncology, 25(25), 3866–3870.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hayasaka, S., & Nichols, T. E. (2004). Combining voxel intensity and cluster extent with permutation test framework. NeuroImage, 23(1), 54–63.CrossRefPubMedGoogle Scholar
  31. Heaton, R. K., Walden Miller, S., Taylor, M. J., & Grant, I. (2004). Revised comprehensive norms for an expanded Halstead-Reitan battery: Demographically adjusted neuropsychological norms for african american and caucasian adults. Florida: Psychological Assessment Resources Inc..Google Scholar
  32. Hensley, M. L., Correa, D. D., Thaler, H., Wilton, A., Venkatraman, E., Sabbatini, P., et al. (2006). Phase I/II study of weekly paclitaxel plus carboplatin and gemcitabine as first-line treatment of advanced-stage ovarian cancer: pathologic complete response and longitudinal assessment of impact on cognitive functioning. Gynecologic Oncology, 102(2), 270–277.CrossRefPubMedGoogle Scholar
  33. Hess, L. M., Chambers, S. K., Hatch, K., Hallum, A., Janicek, M. F., Buscema, J., et al. (2010). Pilot study of the prospective identification of changes in cognitive function during chemotherapy treatment for advanced ovarian cancer. Journal of Supportive Oncology, 8(6), 252–258.CrossRefPubMedGoogle Scholar
  34. Hess, L. M., Huang, H. Q., Hanlon, A. L., Robinson, W. R., Johnson, R., Chambers, S. K., et al. (2015). Cognitive function during and six months following chemotherapy for front-line treatment of ovarian, primary peritoneal or fallopian tube cancer: an NRG oncology/gynecologic oncology group study. Gynecologic Oncology, 139(3), 541–545.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Inagaki, M., Yoshikawa, E., Matsuoka, Y., Sugawara, Y., Nakano, T., Akechi, T., et al. (2007). Smaller regional volumes of brain gray and white matter demonstrated in breast cancer survivors exposed to adjuvant chemotherapy. Cancer, 109(1), 146–156.CrossRefPubMedGoogle Scholar
  36. Kayl, A. E., & Meyers, C. A. (2006). Side-effects of chemotherapy and quality of life in ovarian and breast cancer patients. Current Opinion in Obstetrics & Gynecology, 18(1), 24–28.CrossRefGoogle Scholar
  37. Kesler, S. R., Bennett, F. C., Mahaffey, M. L., & Spiegel, D. (2009). Regional brain activation during verbal declarative memory in metastatic breast cancer. Clinical Cancer Research, 15(21), 6665–6673.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kesler, S. R., Kent, J. S., & O'Hara, R. (2011). Prefrontal cortex and executive function impairments in primary breast cancer. Archives of Neurology, 68(11), 1447–1453.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kluetsch, R. C., Schmahl, C., Niedtfeld, I., Densmore, M., Calhoun, V. D., Daniels, J., et al. (2012). Alterations in default mode network connectivity during pain processing in borderline personality disorder. Archives of General Psychiatry, 69(10), 993–1002.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Koppelmans, V., de Ruiter, M. B., van der Lijn, F., Boogerd, W., Seynaeve, C., van der Lugt, A., et al. (2012). Global and focal brain volume in long-term breast cancer survivors exposed to adjuvant chemotherapy. Breast Cancer Research and Treatment, 132(3), 1099–1106.CrossRefPubMedGoogle Scholar
  41. Leung, A. W., & Alain, C. (2011). Working memory load modulates the auditory "What" and "Where" neural networks. NeuroImage, 55(3), 1260–1269.CrossRefPubMedGoogle Scholar
  42. Lewinsohn, P. M., Seeley, J. R., Roberts, R. E., & Allen, N. B. (1997). Center for Epidemiologic Studies Depression Scale (CES-D) as a screening instrument for depression among community-residing older adults. Psychology and Aging, 12(2), 277–287.CrossRefPubMedGoogle Scholar
  43. Lopez Zunini, R. A., Scherling, C., Wallis, N., Collins, B., MacKenzie, J., Bielajew, C., et al. (2013). Differences in verbal memory retrieval in breast cancer chemotherapy patients compared to healthy controls: a prospective fMRI study. Brain Imaging and Behavior, 7(4), 460–477.CrossRefPubMedGoogle Scholar
  44. Manohar, S., Jamesdaniel, S., & Salvi, R. (2014). Cisplatin inhibits hippocampal cell proliferation and alters the expression of apoptotic genes. Neurotoxicity Research, 25(4), 369–380.CrossRefPubMedGoogle Scholar
  45. Marshuetz, C., Smith, E. E., Jonides, J., DeGutis, J., & Chenevert, T. L. (2000). Order information in working memory: fMRI evidence for parietal and prefrontal mechanisms. Journal of Cognitive Neuroscience, 12(Suppl 2), 130–144.CrossRefPubMedGoogle Scholar
  46. Mayerhofer, K., Bodner-Adler, B., Bodner, K., Saletu, B., Schindl, M., Kaider, A., et al. (2000). A paclitaxel-containing chemotherapy does not cause central nervous adverse effects: a prospective study in patients with ovarian cancer. Anticancer Research, 20(5c), 4051–4055.PubMedGoogle Scholar
  47. McAllister, T. W., Sparling, M. B., Flashman, L. A., Guerin, S. J., Mamourian, A. C., & Saykin, A. J. (2001). Differential working memory load effects after mild traumatic brain injury. NeuroImage, 14(5), 1004–1012.CrossRefPubMedGoogle Scholar
  48. McDonald, B. C., & Saykin, A. J. (2013). Alterations in brain structure related to breast cancer and its treatment: chemotherapy and other considerations. Brain Imaging and Behavior, 7(4), 374–387.CrossRefPubMedGoogle Scholar
  49. McDonald, B. C., Conroy, S. K., Ahles, T. A., West, J. D., & Saykin, A. J. (2010). Gray matter reduction associated with systemic chemotherapy for breast cancer: a prospective MRI study. Breast Cancer Research and Treatment, 123(3), 819–828.CrossRefPubMedPubMedCentralGoogle Scholar
  50. McDonald, B. C., Conroy, S. K., Ahles, T. A., West, J. D., & Saykin, A. J. (2012). Alterations in brain activation during working memory processing associated with breast cancer and treatment: a prospective functional magnetic resonance imaging study. Journal of Clinical Oncology, 30(20), 2500–2508.CrossRefPubMedPubMedCentralGoogle Scholar
  51. McDonald, B. C., Conroy, S. K., Smith, D. J., West, J. D., & Saykin, A. J. (2013). Frontal gray matter reduction after breast cancer chemotherapy and association with executive symptoms: a replication and extension study. Brain, Behavior, and Immunity, 30(Suppl), S117–S125.CrossRefPubMedGoogle Scholar
  52. McGuire 3rd, W. P., & Markman, M. (2003). Primary ovarian cancer chemotherapy: current standards of care. British Journal of Cancer, 89(Suppl 3), S3–S8.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Morrison, J., Swanton, A., Collins, S., & Kehoe, S. (2007). Chemotherapy versus surgery for initial treatment in advanced ovarian epithelial cancer. Cochrane Database of Systematic Reviews, 4, CD005343.Google Scholar
  54. Nenadic, I., Smesny, S., Schlosser, R. G., Sauer, H., & Gaser, C. (2010). Auditory hallucinations and brain structure in schizophrenia: voxel-based morphometric study. British Journal of Psychiatry, 196(5), 412–413.CrossRefPubMedGoogle Scholar
  55. Niedtfeld, I., Schulze, L., Krause-Utz, A., Demirakca, T., Bohus, M., & Schmahl, C. (2013). Voxel-based morphometry in women with borderline personality disorder with and without comorbid posttraumatic stress disorder. PloS One, 8(6), e65824.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Nudelman, K. N., McDonald, B. C., Wang, Y., Smith, D. J., West, J. D., O’Neill, D. P., et al. (2016). Cerebral perfusion and gray matter changes associated with chemotherapy-induced peripheral neuropathy. Journal of Clinical Oncology, 34(7), 677–683.CrossRefPubMedGoogle Scholar
  57. Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: a meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25(1), 46–59.CrossRefPubMedGoogle Scholar
  58. Ozols, R. F. (2002). Update on the management of ovarian cancer. Cancer Journal, 8 Suppl 1, S22–30.Google Scholar
  59. Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M., & Raichle, M. E. (1988). Positron emission tomographic studies of the cortical anatomy of single-word processing. Nature, 331(6157), 585–589.CrossRefPubMedGoogle Scholar
  60. Philip, N. S., Sweet, L. H., Tyrka, A. R., Carpenter, S. L., Albright, S. E., Price, L. H., et al. (2016). Exposure to childhood trauma is associated with altered n-back activation and performance in healthy adults: implications for a commonly used working memory task. Brain Imaging and Behavior, 10(1), 124–135.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Posner, M. I., Petersen, S. E., Fox, P. T., & Raichle, M. E. (1988). Localization of cognitive operations in the human brain. Science, 240(4859), 1627–1631.CrossRefPubMedGoogle Scholar
  62. Radloff, L. S. (1977). The CES-D scale: a self-report depression scale for research in the general population. Applied Psychological Measurement, 1(3), 385–401.CrossRefGoogle Scholar
  63. Ragland, J. D., Turetsky, B. I., Gur, R. C., Gunning-Dixon, F., Turner, T., Schroeder, L., et al. (2002). Working memory for complex figures: an fMRI comparison of letter and fractal n-back tasks. Neuropsychology, 16(3), 370–379.CrossRefPubMedPubMedCentralGoogle Scholar
  64. Rzeski, W., Pruskil, S., Macke, A., Felderhoff-Mueser, U., Reiher, A. K., Hoerster, F., et al. (2004). Anticancer agents are potent neurotoxins in vitro and in vivo. Annals of Neurology, 56(3), 351–360.CrossRefPubMedGoogle Scholar
  65. Scherling, C., Collins, B., Mackenzie, J., Bielajew, C., & Smith, A. (2011). Pre-chemotherapy differences in visuospatial working memory in breast cancer patients compared to controls: an FMRI study. Frontiers in Human Neuroscience, 5, 122.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Scherling, C., Collins, B., Mackenzie, J., Bielajew, C., & Smith, A. (2012). Prechemotherapy differences in response inhibition in breast cancer patients compared to controls: a functional magnetic resonance imaging study. Journal of Clinical and Experimental Neuropsychology, 34(5), 543–560.CrossRefPubMedGoogle Scholar
  67. Scherwath, A., Mehnert, A., Schleimer, B., Schirmer, L., Fehlauer, F., Kreienberg, R., et al. (2006). Neuropsychological function in high-risk breast cancer survivors after stem-cell supported high-dose therapy versus standard-dose chemotherapy: evaluation of long-term treatment effects. Annals of Oncology, 17(3), 415–423.CrossRefPubMedGoogle Scholar
  68. Schilder, C. M., & Schagen, S. B. (2007). Effects of hormonal therapy on cognitive functioning in breast cancer patients: a review of the literature. Minerva Ginecologica, 59(4), 387–401.PubMedGoogle Scholar
  69. Schilder, C. M., Seynaeve, C., Beex, L. V., Boogerd, W., Linn, S. C., Gundy, C. M., et al. (2010). Effects of tamoxifen and exemestane on cognitive functioning of postmenopausal patients with breast cancer: results from the neuropsychological side study of the tamoxifen and exemestane adjuvant multinational trial. Journal of Clinical Oncology, 28(8), 1294–1300.CrossRefPubMedGoogle Scholar
  70. Schretlen, D., Bobholz, J. H., & Brandt, J. (1996). Development and psychometric properties of the brief test of attention. The Clinical Neuropsychologist, 10(1), 80–89.CrossRefGoogle Scholar
  71. Shuster, L. T., Gostout, B. S., Grossardt, B. R., & Rocca, W. A. (2008). Prophylactic oophorectomy in premenopausal women and long-term health. Menopause International, 14(3), 111–116.PubMedPubMedCentralGoogle Scholar
  72. Siegel, R. L., Miller, K. D., & Jemal, A. (2015). Cancer statistics, 2015. CA: A Cancer Journal for Clinicians, 65(1), 5–29.Google Scholar
  73. Stouten-Kemperman, M. M., de Ruiter, M. B., Boogerd, W., Veltman, D. J., & Reneman, L. (2015). Very late treatment-related alterations in brain function of breast cancer survivors. Journal of the International Neuropsychological Society, 21(1), 50–61.CrossRefPubMedGoogle Scholar
  74. Tuxen, M. K., & Hansen, S. W. (1994). Neurotoxicity secondary to antineoplastic drugs. Cancer Treatment Reviews, 20(2), 191–214.CrossRefPubMedGoogle Scholar
  75. Vardy, J., Wefel, J. S., Ahles, T., Tannock, I. F., & Schagen, S. B. (2008). Cancer and cancer-therapy related cognitive dysfunction: an international perspective from the Venice cognitive workshop. Annals of Oncology, 19(4), 623–629.CrossRefPubMedGoogle Scholar
  76. Vichaya, E. G., Chiu, G. S., Krukowski, K., Lacourt, T. E., Kavelaars, A., Dantzer, R., et al. (2015). Mechanisms of chemotherapy-induced behavioral toxicities. Frontiers in Neuroscience, 9, 131.CrossRefPubMedPubMedCentralGoogle Scholar
  77. Wechsler, D. (2009). Wechsler memory scale-(WMS-IV). New York: The Psychological Corporation.Google Scholar
  78. Wefel, J. S., Kayl, A. E., & Meyers, C. A. (2004a). Neuropsychological dysfunction associated with cancer and cancer therapies: a conceptual review of an emerging target. British Journal of Cancer, 90(9), 1691–1696.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Wefel, J. S., Lenzi, R., Theriault, R. L., Davis, R. N., & Meyers, C. A. (2004b). The cognitive sequelae of standard-dose adjuvant chemotherapy in women with breast carcinoma: results of a prospective, randomized, longitudinal trial. Cancer, 100(11), 2292–2299.CrossRefPubMedGoogle Scholar
  80. Wefel, J. S., Saleeba, A. K., Buzdar, A. U., & Meyers, C. A. (2010). Acute and late onset cognitive dysfunction associated with chemotherapy in women with breast cancer. Cancer, 116(14), 3348–3356.CrossRefPubMedGoogle Scholar
  81. Yellen, S. B., Cella, D. F., Webster, K., Blendowski, C., & Kaplan, E. (1997). Measuring fatigue and other anemia-related symptoms with the Functional Assessment of Cancer Therapy (FACT) measurement system. Journal of Pain and Symptom Management, 13(2), 63–74.CrossRefPubMedGoogle Scholar
  82. Zhou, W., Kavelaars, A., & Heijnen, C. J. (2016). Metformin Prevents Cisplatin-Induced Cognitive Impairment and Brain Damage in Mice. PloS One, 11(3), e0151890.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • D. D. Correa
    • 1
    Email author
  • J. C. Root
    • 2
  • M. Kryza-Lacombe
    • 1
  • M. Mehta
    • 3
  • S. Karimi
    • 4
  • M. L. Hensley
    • 5
  • N. Relkin
    • 6
  1. 1.Departments of NeurologyMemorial Sloan Kettering Cancer CenterNew YorkUSA
  2. 2.Psychiatry & Behavioral SciencesMemorial Sloan Kettering Cancer CenterNew YorkUSA
  3. 3.Anesthesiology and Critical Care MedicineMemorial Sloan Kettering Cancer CenterNew YorkUSA
  4. 4.RadiologyMemorial Sloan Kettering Cancer CenterNew YorkUSA
  5. 5.MedicineMemorial Sloan Kettering Cancer CenterNew YorkUSA
  6. 6.New YorkUSA

Personalised recommendations