Skip to main content
Log in

Mapping face encoding using functional MRI in multiple sclerosis across disease phenotypes

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Using fMRI during a face encoding (FE) task, we investigated the behavioral and fMRI correlates of FE in patients with relapse-onset multiple sclerosis (MS) at different stages of the disease and their relation with attentive-executive performance and structural MRI measures of disease-related damage. A fMRI FE task was administered to 75 MS patients (11 clinically isolated syndromes - CIS, 40 relapsing-remitting - RRMS - and 24 secondary progressive - SPMS) and 22 healthy controls (HC). fMRI activity during the face encoding condition was correlated with behavioral, clinical, neuropsychological and structural MRI variables. All study subjects activated brain regions belonging to face perception and encoding network, and deactivated areas of the default-mode network. Compared to HC, MS patients had the concomitant presence of areas of increased and decreased activations as well as increased and decreased deactivations. Compared to HC or RRMS, CIS patients experienced an increased recruitment of posterior-visual areas. Thalami, para-hippocampal gyri and right anterior cingulum were more activated in RRMS vs CIS or SPMS patients, while an increased recruitment of frontal areas was observed in SPMS vs RRMS. Areas of abnormal activations were significantly correlated with clinical, cognitive-behavioral and structural MRI measures. Abnormalities of FE network occur in MS and vary across disease clinical phenotypes. Early in the disease, an increased recruitment of areas typically devoted to face perception and encoding occurs. In SPMS patients, abnormal functional recruitment of frontal lobe areas might contribute to the severity of clinical manifestations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amann, M., Dossegger, L. S., Penner, I. K., et al. (2011). Altered functional adaptation to attention and working memory tasks with increasing complexity in relapsing-remitting multiple sclerosis patients. Human Brain Mapping, 32, 1704–1719.

    Article  PubMed  Google Scholar 

  • Anticevic, A., Cole, M. W., Murray, J. D., et al. (2012). The role of default network deactivation in cognition and disease. Trends in Cognitive Sciences, 16, 584–592.

    Article  PubMed  PubMed Central  Google Scholar 

  • Atkinson, A. P., & Adolphs, R. (2011). The neuropsychology of face perception: beyond simple dissociations and functional selectivity. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 366, 1726–1738.

    Article  PubMed  PubMed Central  Google Scholar 

  • Audoin, B., Ibarrola, D., Ranjeva, J. P., et al. (2003). Compensatory cortical activation observed by fMRI during a cognitive task at the earliest stage of MS. Human Brain Mapping, 20, 51–58.

    Article  PubMed  Google Scholar 

  • Banati, M., Sandor, J., Mike, A., et al. (2010). Social cognition and theory of mind in patients with relapsing-remitting multiple sclerosis. European Journal of Neurology, 17, 426–433.

    Article  CAS  PubMed  Google Scholar 

  • Bonavita, S., Gallo, A., Sacco, R., et al. (2011). Distributed changes in default-mode resting-state connectivity in multiple sclerosis. Multiple Sclerosis, 17, 411–422.

    Article  PubMed  Google Scholar 

  • Boutet, I., Gentes-Hawn, A., & Chaudhuri, A. (2002). The influence of attention on holistic face encoding. Cognition, 84, 321–341.

    Article  PubMed  Google Scholar 

  • Celone, K. A., Calhoun, V. D., Dickerson, B. C., et al. (2006). Alterations in memory networks in mild cognitive impairment and Alzheimer’s disease: an independent component analysis. The Journal of Neuroscience, 26, 10222–10231.

    Article  CAS  PubMed  Google Scholar 

  • Chiaravalloti, N. D., & DeLuca, J. (2008). Cognitive impairment in multiple sclerosis. Lancet Neurology, 7, 1139–1151.

    Article  PubMed  Google Scholar 

  • Chiaravalloti, N. D., Stojanovic-Radic, J., & DeLuca, J. (2013). The role of speed versus working memory in predicting learning new information in multiple sclerosis. Journal of Clinical and Experimental Neuropsychology, 35, 180–191.

    Article  PubMed  Google Scholar 

  • Dekowska, M., Kuniecki, M., & Jaskowski, P. (2008). Facing facts: neuronal mechanisms of face perception. Acta Neurobiologiae Experimentalis (Wars), 68, 229–252.

    Google Scholar 

  • Dietsche, B., Backes, H., Stratmann, M., et al. (2014). Altered neural function during episodic memory encoding and retrieval in major depression. Human Brain Mapping, 35, 4293–4302.

    Article  PubMed  Google Scholar 

  • Fairhall, S. L., & Ishai, A. (2007). Effective connectivity within the distributed cortical network for face perception. Cerebral Cortex, 17, 2400–2406.

    Article  PubMed  Google Scholar 

  • Forn C, Rocca M, Valsasina P, et al. (2011) Functional magnetic resonance imaging correlates of cognitive performance in patients with a clinically isolated syndrome suggestive of multiple sclerosis at presentation: an activation and connectivity study. Multiple Sclerosis.

  • Friston, K. J. H. A., Worsley, K. J., Poline, J. B., Frith, C. D., & Frackowiak, R. S. J. (1995). Statistical parametric maps in functional imaging: a general linear approach. Human Brain Mapping, 189–210.

  • Garoff, R. J., Slotnick, S. D., & Schacter, D. L. (2005). The neural origins of specific and general memory: the role of the fusiform cortex. Neuropsychologia, 43, 847–859.

    Article  PubMed  Google Scholar 

  • Goekoop, R., Rombouts, S. A., Jonker, C., et al. (2004). Challenging the cholinergic system in mild cognitive impairment: a pharmacological fMRI study. Neuroimage, 23, 1450–1459.

    Article  PubMed  Google Scholar 

  • Haxby, J. V., Hoffman, E. A., & Gobbini, M. I. (2002). Human neural systems for face recognition and social communication. Biological Psychiatry, 51, 59–67.

    Article  PubMed  Google Scholar 

  • Hillary, F. G. (2008). Neuroimaging of working memory dysfunction and the dilemma with brain reorganization hypotheses. Journal of the International Neuropsychological Society, 14, 526–534.

    Article  PubMed  Google Scholar 

  • Jehna, M., Langkammer, C., Wallner-Blazek, M., et al. (2011). Cognitively preserved MS patients demonstrate functional differences in processing neutral and emotional faces. Brain Imaging and Behavior, 5, 241–251.

    Article  PubMed  Google Scholar 

  • Kim, H. (2011). Neural activity that predicts subsequent memory and forgetting: a meta-analysis of 74 fMRI studies. Neuroimage, 54, 2446–2461.

    Article  PubMed  Google Scholar 

  • Krause, M., Wendt, J., Dressel, A., et al. (2009). Prefrontal function associated with impaired emotion recognition in patients with multiple sclerosis. Behavioural Brain Research, 205, 280–285.

    Article  PubMed  Google Scholar 

  • Loitfelder, M., Fazekas, F., Petrovic, K., et al. (2011). Reorganization in cognitive networks with progression of multiple sclerosis: insights from fMRI. Neurology, 76, 526–533.

    Article  CAS  PubMed  Google Scholar 

  • Lublin, F. D., & Reingold, S. C. (1996). Defining the clinical course of multiple sclerosis: results of an international survey. National Multiple Sclerosis Society (USA) advisory committee on clinical trials of new agents in multiple sclerosis. Neurology, 46, 907–911.

    Article  CAS  PubMed  Google Scholar 

  • Manson, S. C., Wegner, C., Filippi, M., et al. (2008). Impairment of movement-associated brain deactivation in multiple sclerosis: further evidence for a functional pathology of interhemispheric neuronal inhibition. Experimental Brain Research, 187, 25–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mayer, J. S., Roebroeck, A., Maurer, K., & Linden, D. E. (2010). Specialization in the default mode: task-induced brain deactivations dissociate between visual working memory and attention. Human Brain Mapping, 31, 126–139.

    PubMed  Google Scholar 

  • Morgen, K., Sammer, G., Courtney, S. M., et al. (2007). Distinct mechanisms of altered brain activation in patients with multiple sclerosis. Neuroimage, 37, 937–946.

    Article  PubMed  Google Scholar 

  • Polman, C. H., Reingold, S. C., Banwell, B., et al. (2011). Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Annals of Neurology, 69, 292–302.

    Article  PubMed  PubMed Central  Google Scholar 

  • Powell, H. W., Koepp, M. J., Symms, M. R., et al. (2005). Material-specific lateralization of memory encoding in the medial temporal lobe: blocked versus event-related design. Neuroimage, 27, 231–239.

    Article  CAS  PubMed  Google Scholar 

  • Prochnow, D., Donell, J., Schafer, R., et al. (2011). Alexithymia and impaired facial affect recognition in multiple sclerosis. Journal of Neurology, 258, 1683–1688.

    Article  CAS  PubMed  Google Scholar 

  • Raichle, M. E., MacLeod, A. M., Snyder, A. Z., et al. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences of the United States of America, 98, 676–682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rao SM. A (1991) Manual for the brief, repeatable battery of neuropsychological tests in multiple sclerosis: National Multiple Sclerosis Society.

  • Rao, S. M., Leo, G. J., Bernardin, L., & Unverzagt, F. (1991). Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns, and prediction. Neurology, 41, 685–691.

    Article  CAS  PubMed  Google Scholar 

  • Rocca, M. A., Colombo, B., Falini, A., et al. (2005). Cortical adaptation in patients with MS: a cross-sectional functional MRI study of disease phenotypes. Lancet Neurology, 4, 618–626.

    Article  PubMed  Google Scholar 

  • Rocca, M. A., Valsasina, P., Absinta, M., et al. (2010). Default-mode network dysfunction and cognitive impairment in progressive MS. Neurology, 74, 1252–1259.

    Article  CAS  PubMed  Google Scholar 

  • Rocca, M. A., Valsasina, P., Hulst, H. E., et al. (2014). Functional correlates of cognitive dysfunction in multiple sclerosis: a multicenter fMRI study. Human Brain Mapping, 35, 5799–5814.

    Article  PubMed  Google Scholar 

  • Rocca, M. A., Amato, M. P., De Stefano, N., et al. (2015). Clinical and imaging assessment of cognitive dysfunction in multiple sclerosis. Lancet Neurology, 14, 302–317.

    Article  PubMed  Google Scholar 

  • Rombouts, S. A., Goekoop, R., Stam, C. J., Barkhof, F., & Scheltens, P. (2005). Delayed rather than decreased BOLD response as a marker for early Alzheimer’s disease. Neuroimage, 26, 1078–1085.

    Article  PubMed  Google Scholar 

  • Sepulcre, J., Vanotti, S., Hernandez, R., et al. (2006). Cognitive impairment in patients with multiple sclerosis using the brief repeatable battery-neuropsychology test. Multiple Sclerosis, 12, 187–195.

    Article  CAS  PubMed  Google Scholar 

  • Sidhu, M. K., Stretton, J., Winston, G. P., et al. (2013). A functional magnetic resonance imaging study mapping the episodic memory encoding network in temporal lobe epilepsy. Brain, 136, 1868–1888.

    Article  PubMed  PubMed Central  Google Scholar 

  • Spreng RN. The fallacy of a "task-negative" network. Frontiers in Psychology 2012;3:145.

  • Spreng, R. N., Stevens, W. D., Chamberlain, J. P., Gilmore, A. W., & Schacter, D. L. (2010). Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. Neuroimage, 53, 303–317.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sumowski, J. F., Wylie, G. R., Deluca, J., & Chiaravalloti, N. (2010). Intellectual enrichment is linked to cerebral efficiency in multiple sclerosis: functional magnetic resonance imaging evidence for cognitive reserve. Brain, 133, 362–374.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimo Filippi.

Ethics declarations

Funding

Partially supported by grants from the Italian Ministry of Health (GR 2008–1,138,784) and Fondazione Italiana Sclerosi Multipla (FISM2011/R/19).

Disclosure of potential conflicts of interest

L. Vacchi, ME Rodegher, A. Meani, V. Martinelli, F. Possa and A. Falini report no disclosures.

M.A. Rocca received speakers honoraria from Biogen Idec, Novartis, Genzyme and ExCemed and receives research support from the Italian Ministry of Health and Fondazione Italiana Sclerosi Multipla.

G. Comi has received compensation for consulting services and/or speaking activities from Novartis, Teva Pharmaceutical Ind., Sanofi, Genzyme, Merck Serono, Biogen Bayer, Actelion and ExCemed.

M. Filippi serves on a scientific advisory board for Teva Pharmaceutical Industries; has received compensation for consulting services and/or speaking activities from Bayer Schering Pharma, Biogen Idec, Merck Serono, and Teva Pharmaceutical Industries; and receives research support from Bayer Schering Pharma, Biogen Idec, Merck Serono, Teva Pharmaceutical Industries, Italian Ministry of Health, Fondazione Italiana Sclerosi Multipla, Cure PSP, Alzheimer’s Drug Discovery Foundation (ADDF), and the Jacques and Gloria Gossweiler Foundation (Switzerland).

Research involving human participants

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rocca, M.A., Vacchi, L., Rodegher, M. et al. Mapping face encoding using functional MRI in multiple sclerosis across disease phenotypes. Brain Imaging and Behavior 11, 1238–1247 (2017). https://doi.org/10.1007/s11682-016-9591-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-016-9591-9

Keywords

Navigation