Brain Imaging and Behavior

, Volume 11, Issue 4, pp 964–976 | Cite as

Intrinsic network connectivity and own body perception in gender dysphoria

  • Jamie D. FeusnerEmail author
  • Andreas Lidström
  • Teena D. Moody
  • Cecilia Dhejne
  • Susan Y. Bookheimer
  • Ivanka Savic
Original Research


Gender dysphoria (GD) is characterized by incongruence between one’s identity and gender assigned at birth. The biological mechanisms of GD are unclear. We investigated brain network connectivity patterns involved in own body perception in the context of self in GD. Twenty-seven female-to-male (FtM) individuals with GD, 27 male controls, and 27 female controls underwent resting state fMRI. We compared functional connections within intrinsic connectivity networks involved in self-referential processes and own body perception –default mode network (DMN) and salience network – and visual networks, using independent components analyses. Behavioral correlates of network connectivity were also tested using self-perception ratings while viewing own body images morphed to their sex assigned at birth, and to the sex of their gender identity. FtM exhibited decreased connectivity of anterior and posterior cingulate and precuneus within the DMN compared with controls. In FtM, higher “self” ratings for bodies morphed towards the sex of their gender identity were associated with greater connectivity of the anterior cingulate within the DMN, during long viewing times. In controls, higher ratings for bodies morphed towards their gender assigned at birth were associated with right insula connectivity within the salience network, during short viewing times. Within visual networks FtM showed weaker connectivity in occipital and temporal regions. Results suggest disconnectivity within networks involved in own body perception in the context of self in GD. Moreover, perception of bodies in relation to self may be reflective rather than reflexive, as a function of mesial prefrontal processes. These may represent neurobiological correlates to the subjective disconnection between perception of body and self-identification.


Gender identity disorder Transsexual Transgender Body image Body identification Resting state fMRI 



We are extremely grateful to Amirhossein Manzouri for assistance with experiments and data processing, and Kyriaki Kosidou for several patient referrals. We would like to also thank Wei Li for his assistance with programming the stimuli for presentation, Marius Zimmermann for some fMRI analyses, and Gerhard Hellemann for statistical consultation.

Compliance with Ethical Standards

Financial support

This work was supported by grants from the Swedish Science Council (I.S., grant number Dnr 2007–3107); Stockholm Brain Institute (I.S.); FORTE (I.S.); AFA (I.S.); and the National Institutes of Health (J.F., grant numbers K23MH079212 and R01MH093535).


This study was funded by grants from the Swedish Science Council (I.S., grant number Dnr 2007–3107); Stockholm Brain Institute (I.S.); FORTE (I.S.); AFA (I.S.); and the National Institutes of Health (J.F., grant numbers K23MH079212 and R01MH093535).

Conflict of interest

Jamie Feusner declares that he has no conflict of interest. Andreas Lidström declares that he has no conflict of interest. Teena Moody declares that she has no conflict of interest. Cecilia Dhejne declares that she has no conflict of interest. Susan Bookheimer declares that she has no conflict of interest. Ivanka Savic declares that she has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.


  1. American Psychiatric Association (2013). Diagnostic and statistical manual of mental disorders: DSM-5 ( (5th ed.) ed.). Washington, DC: American Psychiatric Association.Google Scholar
  2. Bandini, E., Fisher, A. D., Castellini, G., Lo Sauro, C., Lelli, L., Meriggiola, M. C., et al. (2013). Gender identity disorder and eating disorders: similarities and differences in terms of body uneasiness. The Journal of Sexual Medicine, 10(4), 1012–1023. doi: 10.1111/jsm.12062. CrossRefPubMedGoogle Scholar
  3. Beckmann, C. F., & Smith, S. M. (2004). Probabilistic independent component analysis for functional magnetic resonance imaging. [Evaluation Studies Research Support, Non-U.S. Gov’t Validation Studies]. IEEE Transactions on Medical Imaging, 23(2), 137–152. doi: 10.1109/TMI.2003.822821. CrossRefPubMedGoogle Scholar
  4. Beckmann, C. F., DeLuca, M., Devlin, J. T., & Smith, S. M. (2005). Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 360(1457), 1001–1013. doi: 10.1098/rstb.2005.1634. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34(4), 537–541.CrossRefPubMedGoogle Scholar
  6. Blanke, O., Landis, T., Spinelli, L., & Seeck, M. (2004). Out-of-body experience and autoscopy of neurological origin. Brain, 127(Pt 2), 243–258. doi: 10.1093/brain/awh040. CrossRefPubMedGoogle Scholar
  7. Calhoun, V. D., Adali, T., McGinty, V. B., Pekar, J. J., Watson, T. D., & Pearlson, G. D. (2001). fMRI activation in a visual-perception task: network of areas detected using the general linear model and independent components analysis. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. NeuroImage, 14(5), 1080–1088. doi: 10.1006/nimg.2001.0921. CrossRefPubMedGoogle Scholar
  8. Carhart-Harris, R. L., & Friston, K. J. (2010). The default-mode, ego-functions and free-energy: a neurobiological account of Freudian ideas. [Research Support, Non-U.S. Gov’t Review]. Brain : A Journal of Neurology, 133(Pt 4), 1265–1283. doi: 10.1093/brain/awq010.CrossRefGoogle Scholar
  9. Cash, T. F., & Pruzinsky, T. (2002). Body Image: A Handbook of Theory, Research, and Clinical Practice. New York: Guilford Press.Google Scholar
  10. Christoff, K., Gordon, A. M., Smallwood, J., Smith, R., & Schooler, J. W. (2009). Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proceedings of the National Academy of Sciences, 106(21), 8719–8724. doi: 10.1073/pnas.0900234106. CrossRefGoogle Scholar
  11. Cohen-Kettenis, P. T., & Pfafflin, F. (2010). The DSM diagnostic criteria for gender identity disorder in adolescents and adults. Archives of Sexual Behavior, 39(2), 499–513. doi: 10.1007/s10508-009-9562-y. CrossRefPubMedGoogle Scholar
  12. Cole, M. W., Bassett, D. S., Power, J. D., Braver, T. S., & Petersen, S. E. (2014). Intrinsic and task-evoked network architectures of the human brain. Neuron,, 83(1), 238–251. doi: 10.1016/j.neuron.2014.05.014. CrossRefGoogle Scholar
  13. Coleman, E., Bockting, W., Botzer, M., Cohen-Kettenis, P., DeCuypere, G., Feldman, J., et al. (2012). Standards of Care for the Health of Transsexual, Transgender, and Gender-Nonconforming People, Version 7. International Journal of Transgenderism, 13(4), 165–232. doi: 10.1080/15532739.2011.700873. CrossRefGoogle Scholar
  14. Craig, A. D. (2002). How do you feel? Interoception: the sense of the physiological condition of the body. Nature Reviews. Neuroscience, 3(8), 655–666. doi: 10.1038/nrn894. CrossRefPubMedGoogle Scholar
  15. de Vries, A. L. C., Noens, I. L. J., Cohen-Kettenis, P. T., van Berckelaer-Onnes, I. A., & Doreleijers, T. A. (2010). Autism Spectrum disorders in gender Dysphoric children and adolescents. Journal of Autism and Developmental Disorders, 40(8), 930–936. doi: 10.1007/S10803-010-0935-9. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Devinsky, O., Feldmann, E., Burrowes, K., & Bromfield, E. (1989). Autoscopic phenomena with seizures. [Case Reports Review]. Archives of Neurology, 46(10), 1080–1088.CrossRefPubMedGoogle Scholar
  17. Devue, C., & Bredart, S. (2011). The neural correlates of visual self-recognition. Consciousness and Cognition, 20(1), 40–51. doi: 10.1016/j.concog.2010.09.007. CrossRefPubMedGoogle Scholar
  18. Devue, C., Collette, F., Balteau, E., Degueldre, C., Luxen, A., Maquet, P., et al. (2007). Here I am: the cortical correlates of visual self-recognition. Brain Research, 1143, 169–182. doi: 10.1016/j.brainres.2007.01.055. CrossRefPubMedGoogle Scholar
  19. Downing, P. E., & Peelen, M. V. (2011). The role of occipitotemporal body-selective regions in person perception. Cognitive Neuroscience, 2(3–4), 186–203, doi:10.1080/17588928.2011.582945.Google Scholar
  20. Downing, P. E., Wiggett, A. J., & Peelen, M. V. (2007). Functional magnetic resonance imaging investigation of overlapping lateral occipitotemporal activations using multi-voxel pattern analysis. [Comparative Study Research Support, Non-U.S. Gov’t]. The Journal of Neuroscience : The Official Journal Of The Society For Neuroscience,, 27(1), 226–233. doi: 10.1523/JNEUROSCI.3619-06.2007. CrossRefGoogle Scholar
  21. Feusner, J. D., Dervisic, J., Kosidou, K., Dhejne, C., Bookheimer, S., & Savic, I. (2016). Female-to-male transsexual individuals demonstrate different own body identification. Archives of Sexual Behavior, 45(3), 525–536. doi: 10.1007/s10508-015-0596-z. CrossRefPubMedGoogle Scholar
  22. Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–9678. doi: 10.1073/Pnas.0504136102.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Gardner, R. M., & Brown, D. L. (2014). Body size estimation in anorexia nervosa: a brief review of findings from 2003 through 2013. Psychiatry Research, 219(3), 407–410. doi: 10.1016/j.psychres.2014.06.029. CrossRefPubMedGoogle Scholar
  24. Gillihan, S. J., & Farah, M. J. (2005). Is self special? A critical review of evidence from experimental psychology and cognitive neuroscience. Psychological Bulletin, 131(1), 76–97. doi: 10.1037/0033-2909.131.1.76. CrossRefPubMedGoogle Scholar
  25. Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003a). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 253–258. doi: 10.1073/Pnas.0135058100. CrossRefPubMedGoogle Scholar
  26. Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003b). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]Google Scholar
  27. Hahn, A., Kranz, G. S., Kublbock, M., Kaufmann, U., Ganger, S., Hummer, A., et al. (2015). Structural connectivity networks of transgender people. Cerebral Cortex, 25(10), 3527–3534. doi: 10.1093/cercor/bhu194. CrossRefPubMedGoogle Scholar
  28. Henderson, J. M. (2007). Regarding Scenes. Current Directions in Psychological Science, 16(4), 219–222. doi: 10.1111/j.1467-8721.2007.00507.x. CrossRefGoogle Scholar
  29. Heydrich, L., Lopez, C., Seeck, M., & Blanke, O. (2011). Partial and full own-body illusions of epileptic origin in a child with right temporoparietal epilepsy. Epilepsy & Behavior, 20(3), 583–586. doi: 10.1016/j.yebeh.2011.01.008. CrossRefGoogle Scholar
  30. Hodzic, A., Muckli, L., Singer, W., & Stirn, A. (2009). Cortical responses to self and others. Human Brain Mapping, 30(3), 951–962. doi: 10.1002/hbm.20558. CrossRefPubMedGoogle Scholar
  31. Hyvarinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks / A Publication Of The Ieee Neural Networks Council, 10(3), 626–634. doi: 10.1109/72.761722. CrossRefGoogle Scholar
  32. Kelly, R. E., Alexopoulos, G. S., Wang, Z., Gunning, F. M., Murphy, C. F., Morimoto, S. S., et al. (2010). Visual inspection of independent components: defining a procedure for artifact removal from fMRI data. Journal of Neuroscience Methods, 189(2), 233–245. doi: 10.1016/j.jneumeth.2010.03.028. CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kim, D. I., Manoach, D. S., Mathalon, D. H., Turner, J. A., Mannell, M., Brown, G. G., et al. (2009). Dysregulation of working memory and default-mode networks in schizophrenia using independent component analysis, an fBIRN and MCIC study. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. Human Brain Mapping, 30(11), 3795–3811. doi: 10.1002/hbm.20807. CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kim, K. R., Ku, J., Lee, J.-H., Lee, H., & Jung, Y.-C. (2012). Functional and effective connectivity of anterior insula in anorexia nervosa and bulimia nervosa. Neuroscience Letters, 521(2), 152–157. doi: 10.1016/j.neulet.2012.05.075. CrossRefPubMedGoogle Scholar
  35. Kranz, G. S., Hahn, A., Kaufmann, U., Kublbock, M., Hummer, A., Ganger, S., et al. (2014). White matter microstructure in transsexuals and controls investigated by diffusion tensor imaging. The Journal of Neuroscience, 34(46), 15466–15475. doi: 10.1523/JNEUROSCI.2488-14.2014. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lin, C. S., Ku, H. L., Chao, H. T., Tu, P. C., Li, C. T., Cheng, C. M., et al. (2014). Neural network of body representation differs between transsexuals and cissexuals. PloS One, 9(1), e85914. doi: 10.1371/journal.pone.0085914. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Malinen, S., Hlushchuk, Y., & Hari, R. (2007). Towards natural stimulation in fMRI--issues of data analysis. [Research Support, Non-U.S. Gov’t]. NeuroImage, 35(1), 131–139. doi: 10.1016/j.neuroimage.2006.11.015. CrossRefPubMedGoogle Scholar
  38. Manzouri, A., Kosidou, K., & Savic, I. (2015). Anatomical and functional findings in female-to-male transsexuals: testing a new hypothesis. Cerebral Cortex. doi: 10.1093/cercor/bhv278. Google Scholar
  39. Mason, M. F., Norton, M. I., Van Horn, J. D., Wegner, D. M., Grafton, S. T., & Macrae, C. N. (2007). Wandering Minds: The Default Network and Stimulus-Independent Thought. Science (New York, N.Y.), 315(5810), 393–395. doi: 10.1126/science.1131295. CrossRefGoogle Scholar
  40. McKeown, M. J., Jung, T. P., Makeig, S., Brown, G., Kindermann, S. S., Lee, T. W., et al. (1998). Spatially independent activity patterns in functional MRI data during the stroop color-naming task. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 803–810.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Molnar-Szakacs, I., & Arzy, S. (2009). Searching for an integrated self-representation. Communicative & Integrative Biology, 2(4), 365–367.CrossRefGoogle Scholar
  42. Molnar-Szakacs, I., & Uddin, L. Q. (2013). Self-processing and the default mode network: interactions with the mirror neuron system. Frontiers in Human Neuroscience, 7, 571. doi: 10.3389/fnhum.2013.00571. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Moseley, G. L., Gallace, A., & Spence, C. (2012). Bodily illusions in health and disease: physiological and clinical perspectives and the concept of a cortical ‘body matrix’. Neuroscience and Biobehavioral Reviews, 36(1), 34–46, doi: 10.1016/j.neubiorev.2011.03.013.
  44. Northoff, G., & Panksepp, J. (2008). The trans-species concept of self and the subcortical-cortical midline system. Trends in Cognitive Sciences, 12(7), 259–264. doi: 10.1016/j.tics.2008.04.007. CrossRefPubMedGoogle Scholar
  45. Northoff, G., Heinzel, A., de Greck, M., Bermpohl, F., Dobrowolny, H., & Panksepp, J. (2006). Self-referential processing in our brain--a meta-analysis of imaging studies on the self. NeuroImage, 31(1), 440–457. doi: 10.1016/j.neuroimage.2005.12.002. CrossRefPubMedGoogle Scholar
  46. Peelen, M. V., & Downing, P. E. (2007). The neural basis of visual body perception. Nature Reviews Neuroscience, 8(8), 636–648. doi: 10.1038/nrn2195. CrossRefPubMedGoogle Scholar
  47. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59(3), 2142–2154. doi: 10.1016/J.Neuroimage.2011.10.018.CrossRefPubMedGoogle Scholar
  48. Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98(2), 676–682. doi: 10.1073/pnas.98.2.676. CrossRefGoogle Scholar
  49. Salomon, R., Levy, D. R., & Malach, R. (2014). Deconstructing the default: cortical subdivision of the default mode/intrinsic system during self-related processing. Human Brain Mapping, 35(4), 1491–1502. doi: 10.1002/hbm.22268. CrossRefPubMedGoogle Scholar
  50. Savic, I. (2013). Structural changes of the brain in relation to occupational stress. Cerebral Cortex. doi: 10.1093/cercor/bht348. PubMedCentralGoogle Scholar
  51. Savic, I., & Arver, S. (2011). Sex dimorphism of the brain in male-to-female transsexuals. Cerebral Cortex, 21(11), 2525–2533. doi: 10.1093/Cercor/Bhr032.CrossRefPubMedGoogle Scholar
  52. Savic, I., & Lindstrom, P. (2008). PET and MRI show differences in cerebral asymmetry and functional connectivity between homo- and heterosexual subjects. Proceedings of the National Academy of Sciences of the United States of America, 105(27), 9403–9408. doi: 10.1073/pnas.0801566105. CrossRefPubMedPubMedCentralGoogle Scholar
  53. Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., et al. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience, 27(9), 2349–2356. doi: 10.1523/JNEUROSCI.5587-06.2007. CrossRefPubMedPubMedCentralGoogle Scholar
  54. Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., et al. (1998). The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. The Journal of Clinical Psychiatry, 59 Suppl 20, 22–33;quiz 34–57.Google Scholar
  55. Shirer, W. R., Ryali, S., Rykhlevskaia, E., Menon, V., & Greicius, M. D. (2012). Decoding subject-driven cognitive states with whole-brain connectivity patterns. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Cerebral Cortex, 22(1), 158–165. doi: 10.1093/cercor/bhr099. CrossRefPubMedGoogle Scholar
  56. Shott, M. E., Pryor, T. L., Yang, T. T., & Frank, G. K. (2016). Greater insula white matter fiber connectivity in women recovered from anorexia nervosa. Neuropsychopharmacology : Official Publication Of The American College of Neuropsychopharmacology, 41(2), 498–507. doi: 10.1038/npp.2015.172. CrossRefGoogle Scholar
  57. Swaab, D. F. (2004). Sexual differentiation of the human brain: relevance for gender identity, transsexualism and sexual orientation. Gynecological Endocrinology, 19(6), 301–312.CrossRefPubMedGoogle Scholar
  58. Tie, Y., Whalen, S., Suarez, R. O., & Golby, A. J. (2008). Group independent component analysis of language fMRI from word generation tasks. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. NeuroImage, 42(3), 1214–1225. doi: 10.1016/j.neuroimage.2008.05.028. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Uddin, L. Q. (2015). Salience processing and insular cortical function and dysfunction. Nature Reviews. Neuroscience, 16(1), 55–61. doi: 10.1038/nrn3857. CrossRefPubMedGoogle Scholar
  60. Uddin, L. Q., Iacoboni, M., Lange, C., & Keenan, J. P. (2007). The self and social cognition: the role of cortical midline structures and mirror neurons. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S. Review]. Trends in Cognitive Sciences, 11(4), 153–157. doi: 10.1016/j.tics.2007.01.001. CrossRefPubMedGoogle Scholar
  61. Verosky, S. C., & Todorov, A. (2010). Differential neural responses to faces physically similar to the self as a function of their valence. NeuroImage, 49(2), 1690–1698. doi: 10.1016/j.neuroimage.2009.10.017. CrossRefPubMedGoogle Scholar
  62. Vocks, S., Hechler, T., Rohrig, S., & Legenbauer, T. (2009). Effects of a physical exercise session on state body image: The influence of pre-experimental body dissatisfaction and concerns about weight and shape. [Randomized Controlled Trial]. Psychology & health, 24(6), 713–728, doi: 10.1080/08870440801998988.
  63. Vocks, S., Busch, M., Schulte, D., Gronermeyer, D., Herpertz, S., & Suchan, B. (2010). Effects of body image therapy on the activation of the extrastriate body area in anorexia nervosa: an fMRI study. Psychiatry Research, 183(2), 114–118. doi: 10.1016/j.pscychresns.2010.05.011. CrossRefPubMedGoogle Scholar
  64. World Health Organization. (1992). The ICD-10 classification of mental and behavioural disorders: clinical descriptions and diagnostic guidelines. Geneva: World Health Organization.Google Scholar
  65. Xu, J., Potenza, M. N., & Calhoun, V. D. (2013). Spatial ICA reveals functional activity hidden from traditional fMRI GLM-based analyses. [Opinion]. Frontiers in Neuroscience, 7. doi: 10.3389/fnins.2013.00154.

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jamie D. Feusner
    • 1
    Email author
  • Andreas Lidström
    • 2
  • Teena D. Moody
    • 1
  • Cecilia Dhejne
    • 3
  • Susan Y. Bookheimer
    • 1
  • Ivanka Savic
    • 2
  1. 1.Department of Psychiatry and Biobehavioral SciencesUniversity of California Los AngelesLos AngelesUSA
  2. 2.Department of Womens and Childrens Health and Neurology ClinicKarolinska Institute and University HospitalStockholmSweden
  3. 3.ANOVA, Center of Expertise in Andrology, Sexual Medicine, and Transgender Medicine, Karolinska University Hospital & Center for Psychiatric Research, Department of Clinical NeuroscienceKarolinska InstituteStockholmSweden

Personalised recommendations