Skip to main content
Log in

Monetary reward magnitude effects on behavior and brain function during goal-directed behavior

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Reward may modulate the cognitive processes required for goal achievement, while individual differences in personality may affect reward modulation. Our aim was to test how different monetary reward magnitudes modulate brain activation and performance during goal-directed behavior, and whether individual differences in reward sensitivity affect this modulation. For this purpose, we scanned 37 subjects with a parametric design in which we varied the magnitude of monetary rewards (€0, €0.01, €0.5, €1 or €1.5) in a blocked fashion while participants performed an interference counting-Stroop condition. The results showed that the brain activity of left dorsolateral prefrontal cortex (DLPFC) and the striatum were modulated by increasing and decreasing reward magnitudes, respectively. Behavioral performance improved as the magnitude of monetary reward increased while comparing the non reward (€0) condition to any other reward condition, or the lower €0.01 to any other reward condition, and this improvement was related with individual differences in reward sensitivity. In conclusion, the locus of influence of monetary incentives overlaps the activity of the regions commonly involved in cognitive control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aarts, E., Roelofs, A., Franke, B., Rijpkema, M., Fernández, G., Helmich, R. C., & Cools, R. (2010). Striatal dopamine mediates the interface between motivational and cognitive control in humans: evidence from genetic imaging. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology, 35(9), 1943–1951. doi:10.1038/npp.2010.68.

    Article  CAS  Google Scholar 

  • Aarts, E., van Holstein, M., & Cools, R. (2011). Striatal dopamine and the Interface between motivation and cognition. Frontiers in Psychology, 2(July), 163. doi:10.3389/fpsyg.2011.00163

  • Ali, N., Green, D. W., Kherif, F., Devlin, J. T., & Price, C. J. (2010). The role of the left head of caudate in suppressing irrelevant words. Journal of Cognitive Neuroscience, 22(10), 2369–2386. doi:10.1162/jocn.2009.21352

  • Aron AR. From reactive to proactive and selective control: developing a richer model for stopping inappropriate responses. Biological Psychiatry [Internet]. Elsevier Inc.; 2011 Jun 15 [cited 2014 Jul 15];69(12):e55–68. Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3039712&tool=pmcentrez&rendertype=abstract

  • Balleine, B. W., & O’Doherty, J. P. (2010). Human and rodent homologies in action control: corticostriatal determinants of goal-directed and habitual action. Neuropsychopharmacology : Official Publication of the American College of Neuropsychopharmacology, 35(1), 48–69. doi:10.1038/npp.2009.131.

    Article  Google Scholar 

  • Balleine, B. W., Delgado, M. R., & Hikosaka, O. (2007). The role of the dorsal striatum in reward and decision-making. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 27(31), 8161–8165. doi:10.1523/JNEUROSCI.1554-07.2007

  • Barrós-Loscertales, A., Bustamante, J. C., Ventura-Campos, N., Llopis, J. J., Parcet, M. A., & Ávila, C. (2011). Lower activation in the right frontoparietal network during a counting stroop task in a cocaine-dependent group. Psychiatry Research - Neuroimaging, 194(2), 111–118. doi:10.1016/j.pscychresns.2011.05.001

  • Braver, T. S. (2012). The variable nature of cognitive control: a dual mechanisms framework. Trends in Cognitive Sciences, 16(2), 106–113. doi:10.1016/j.tics.2011.12.010.

    Article  PubMed  PubMed Central  Google Scholar 

  • Braver, T. S., Krug, M. K., Chiew, K. S., Kool, W., Westbrook, J. A., Clement, N. J., & Somerville, L. H. (2014). Mechanisms of motivation-cognition interaction: challenges and opportunities. Cognitive, Affective, & Behavioral Neuroscience, 14(2), 443–472. doi:10.3758/s13415-014-0300-0.

    Article  Google Scholar 

  • Büchel, C., Holmes, A. P., Rees, G., & Friston, K. J. (1998). Characterizing stimulus-response functions using nonlinear regressors in parametric fMRI experiments. NeuroImage, 8(2), 140–148. doi:10.1006/nimg.1998.0351.

    Article  PubMed  Google Scholar 

  • Bugg, J. M., Jacoby, L. L., & Toth, J. P. (2008). Multiple levels of control in the Stroop task. Memory & Cognition 36(8), 1484–1494. doi:10.3758/MC.36.8.1484

  • Bunge, S. A., Bunge, S. A., Dudukovic, N. M., Dudukovic, N. M., Thomason, M. E., Thomason, M. E., & Gabrieli, J. D. E. (2002). Immature frontal lobe contributions to cognitive control in children: evidence from fMRI. Neuron, 33(2), 301–311. doi:10.1016/S0896-6273(01)00583-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burle, B., Possamaï, C. A., Vidal, F., Bonnet, M., & Hasbroucq, T. (2002). Executive control in the Simon effect: an electromyographic and distributional analysis. Psychological Research, 66(4), 324–336. doi:10.1007/s00426-002-0105-6.

    Article  PubMed  Google Scholar 

  • Bush, G., Whalen, P. J., Rosen, B. R., Jenike, M. A., McInerney, S. C., & Rauch, S. L. (1998). The counting stroop: an interference task specialized for functional neuroimaging--validation study with functional MRI. Human Brain Mapping, 6(4), 270–282 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9704265.

    Article  CAS  PubMed  Google Scholar 

  • Bush, G., Frazier, J. A., Rauch, S. L., Seidman, L. J., Whalen, P. J., Jenike, M. A., & Biederman, J. (1999). Anterior cingulate cortex dysfunction in attention-deficit/hyperactivity disorder revealed by fMRI and the counting stroop. Biological Psychiatry, 45(12), 1542–1552 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10376114.

    Article  CAS  PubMed  Google Scholar 

  • Bush, G., Whalen, P. J., Shin, L. M., & Rauch, S. L. (2006). The counting stroop: a cognitive interference task. Nature Protocols, 1(1), 230–233. doi:10.1038/nprot.2006.35.

    Article  PubMed  Google Scholar 

  • Carter, C. S., Macdonald, A. M., Botvinick, M., Ross, L. L., Stenger, V. A, Noll, D., & Cohen, J. D. (2000). Parsing executive processes: strategic vs. evaluative functions of the anterior cingulate cortex. Proceedings of the National Academy of Sciences of the United States of America, 97(4), 1944–1948. doi:10.1073/pnas.97.4.1944

  • Carver, C. S., & White, T. L. (1994). Behavioral inhibition, behavioral activation, and affective responses to impending reward and punishment: the BIS/BAS Scales. Journal of Personality and Social Psychology, 67(2), 319–333. doi:10.1037/0022-3514.67.2.319.

    Article  Google Scholar 

  • De Pisapia, N., & Braver, T. S. (2006). A model of dual control mechanisms through anterior cingulate and prefrontal cortex interactions. Neurocomputing, 69(10–12), 1322–1326. doi:10.1016/j.neucom.2005.12.100.

    Article  Google Scholar 

  • Delgado, M. R., Locke, H. M., Stenger, V. A., & Fiez, J. A. (2003). Dorsal striatum responses to reward and punishment: effects of valence and magnitude manipulations. Cognitive, Affective, & Behavioral Neuroscience, 3(1), 27–38 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12822596.

    Article  CAS  Google Scholar 

  • Delgado, M. R., Miller, M. M., Inati, S., & Phelps, E. A. (2005). An fMRI study of reward-related probability learning. NeuroImage, 24(3), 862–873. doi:10.1016/j.neuroimage.2004.10.002.

    Article  CAS  PubMed  Google Scholar 

  • Di Martino, A., Scheres, A., Margulies, D. S., Kelly, A. M. C., Uddin, L. Q., Shehzad, Z., & Milham, M. P. (2008). Functional connectivity of human striatum: a resting state FMRI study. Cerebral Cortex (New York, N.Y. : 1991), 18(12), 2735–2747. doi:10.1093/cercor/bhn041.

    Google Scholar 

  • Dreher, J.-C., Kohn, P., & Berman, K. F. (2006). Neural coding of distinct statistical properties of reward information in humans. Cerebral Cortex (New York, N.Y. : 1991), 16(4), 561–573. doi:10.1093/cercor/bhj004

  • Elliott, R., Newman, J. L., Longe, O. A, & Deakin, J. F. W. (2003). Differential response patterns in the striatum and orbitofrontal cortex to financial reward in humans: a parametric functional magnetic resonance imaging study. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 23(1), 303–307. http://doi.org/23/1/303

  • Engelmann, J. B., Damaraju, E., Padmala, S., & Pessoa, L. (2009). Combined effects of attention and motivation on visual task performance: transient and sustained motivational effects. Frontiers in Human Neuroscience, 3(March), 4. doi:10.3389/neuro.09.004.2009

  • Forman, S. D., Cohen, J. D., Fitzgerald, M., Eddy, W. F., Mintun, M. A. & Noll, D. C. (1995). Improved assessment of significant activation in functional magnetic resonance imaging (fMRI): use of culster-size threshold. Magn Reson Med, 33(5):636–47.

  • Friston, K. J., Holmes, A .P., Poline, J. B., Grasby, P. J., Williams, S. C., Frackowiak, R. S., & Turner, R. (1995). Analysis of fMRI time-series revisited. NeuroImage doi:10.1006/nimg.1995.1007

  • Friston, K., Price, C., Buechel, C., & Frackowiak, R. (1997). A taxonomy of study design, (i), 1–22.

  • Funes, M. J., Lupiáñez, J., & Humphreys, G. (2010). Sustained vs. transient cognitive control: evidence of a behavioral dissociation. Cognition, 114(3), 338–347. doi:10.1016/j.cognition.2009.10.007.

    Article  PubMed  Google Scholar 

  • Grandjean, J., D’Ostilio, K., Phillips, C., Balteau, E., Degueldre, C., Luxen, A., & Collette, F. (2012). Modulation of brain activity during a stroop inhibitory task by the kind of cognitive control required. PloS One, 7(7), e41513. doi:10.1371/journal.pone.0041513.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris, I. M., Egan, G. F., Sonkkila, C., Tochon-Danguy, H. J., Paxinos, G., & Watson, J. D. (2000). Selective right parietal lobe activation during mental rotation: a parametric PET study. Brain: A Journal of Neurology 123 ( Pt 1), 65–73. doi:10.1093/brain/123.1.65

  • Haruno, M., Kuroda, T., Doya, K., Toyama, K., Kimura, M., Samejima, K., & Kawato, M. (2004). A Neural Correlate of Reward-Based Behavioral Learning in Caudate Nucleus. A Functional Magnetic Resonance Imaging Study of a Stochastic Decision Task, 24(7), 1660–1665. doi:10.1523/JNEUROSCI.3417-03.2004.

    CAS  Google Scholar 

  • Hayward, G., Goodwin, G. M., & Harmer, C. J. (2004). The role of the anterior cingulate cortex in the counting stroop task. Experimental Brain Research, 154(3), 355–358. doi:10.1007/s00221-003-1665-4.

    Article  PubMed  Google Scholar 

  • Ichihara-Takeda, S., & Funahashi, S. (2008). Activity of primate orbitofrontal and dorsolateral prefrontal neurons: effect of reward schedule on task-related activity. Journal of Cognitive Neuroscience, 20(4), 563–579. doi:10.1162/jocn.2008.20047.

    Article  PubMed  Google Scholar 

  • Jimura, K., Locke, H. S., & Braver, T. S. (2010). Prefrontal cortex mediation of cognitive enhancement in rewarding motivational contexts. Proceedings of the National Academy of Sciences of the United States of America, 107(19), 8871–8876. doi:10.1073/pnas.1002007107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kikyo, H., Ohki, K., & Miyashita, Y. (2002). Neural correlates for feeling-of-knowing. Neuron, 36(1), 177–186. doi:10.1016/S0896-6273(02)00939-X.

    Article  CAS  PubMed  Google Scholar 

  • Knutson, B., & Greer, S. M. (2008). Anticipatory affect: neural correlates and consequences for choice. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363(1511), 3771–3786. doi:10.1098/rstb.2008.0155

  • Knutson, B., Adams, C. M., Fong, G. W., & Hommer, D. (2001). Anticipation of increasing monetary reward selectively recruits nucleus accumbens. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 21(16), RC159. http://doi.org/20015472

  • Knutson, B., Fong, G. W., Bennett, S. M., Adams, C. M., & Hommer, D. (2003). A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: characterization with rapid event-related fMRI. NeuroImage, 18(2), 263–272. doi:10.1016/S1053-8119(02)00057-5.

    Article  PubMed  Google Scholar 

  • Krebs, R. M., Boehler, C. N., & Woldorff, M. G. (2010). The influence of reward associations on conflict processing in the stroop task. Cognition, 117(3), 341–347. doi:10.1016/j.cognition.2010.08.018.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krebs, R. M., Boehler, C. N., Egner, T., & Woldorff, M. G. (2011). The neural underpinnings of how reward associations can both guide and misguide attention. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience,, 31(26), 9752–9759. doi:10.1523/JNEUROSCI.0732-11.2011.

    Article  CAS  Google Scholar 

  • Krebs, R. M., Boehler, C. N., Appelbaum, L. G., & Woldorff, M. G. (2013). Reward associations reduce behavioral interference by changing the temporal dynamics of conflict processing. PloS One, 8(1), e53894. doi:10.1371/journal.pone.0053894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kriegeskorte, N., Simmons, W. K., Bellgowan, P. & Baker, C. I. (2009). Circular analysis in systems neuroscience - the dangers of double dipping. Nat Neurosci, 12(5):535–540. doi:10.1038/nn.2303.

  • Lerchner, A., La Camera, G. & Richmond, B. (2007) Knowing without doing. Nature Neuroscience, 10,15–17. doi:10.1038/nn0107-15

  • Lesh, T. A., Westphal, A. J., Niendam, T. A., Yoon, J. H., Minzenberg, M. J., Ragland, J. D., & Carter, C. S. (2013). Proactive and reactive cognitive control and dorsolateral prefrontal cortex dysfunction in first episode schizophrenia. NeuroImage: Clinical, 2(1), 590–599. doi:10.1016/j.nicl.2013.04.010.

    Article  Google Scholar 

  • Locke, H. S., & Braver, T. S. (2008). Motivational influences on cognitive control: behavior, brain activation, and individual differences. Cognitive, Affective, & Behavioral Neuroscience, 8(1), 99–112. doi:10.3758/cabn.8.1.99

  • Logan, G. D., & Zbrodoff, N. J. (1979). When it helps to be misled: Facilitative effects of increasing the frequency of conflicting stimuli in a Stroop-like task. Memory & Cognition, 7(3), 166–174. doi:10.3758/BF03197535.

    Article  Google Scholar 

  • MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science (New York, N.Y.), 288(5472), 1835–1838. doi:10.1126/science.288.5472.1835.

    Article  CAS  Google Scholar 

  • MacLeod, C. M. (1991). Half a century of research on the stroop effect: an integrative review. Psychological Bulletin, 109(2), 163–203. doi:10.1037//0033-2909.109.2.163.

    Article  CAS  PubMed  Google Scholar 

  • MacLeod, C. M., & MacDonald, P. A. (2000). Interdimensional interference in the stroop effect: uncovering the cognitive and neural anatomy of attention. Trends in Cognitive Sciences, 4(10), 383–391. doi:10.1016/S1364-6613(00)01530-8

  • Maldjian, J. A., Laurienti, P. J., Kraft, R. A., & Burdette, J. H. (2003). An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage, 19(3), 1233–1239. doi:10.1016/S1053-8119(03)00169-1.

    Article  PubMed  Google Scholar 

  • Padmala, S., & Pessoa, L. (2011). Reward reduces conflict by enhancing attentional control and biasing visual cortical processing. Journal of Cognitive Neuroscience, 23(11), 3419–3432. doi:10.1162/jocn_a_00011.

    Article  PubMed  PubMed Central  Google Scholar 

  • Panadero, A., Castellanos, M.C. & Tudela P. (2015). Unconsious context-specific proportion congruency effect in a stroop-like task. Consiousness and cognition, 31:35–45

  • Pickering, A.D. & Gray, J. (1999). Dopamine, appetitive reinforcement, and the neuropsychology of human learning : An individual differences approach Personality and Neuropsychology Possible Personality-Sensitive Processes Affecting Learning.

  • Poldrack, R. A. (2007). Region of interest analysis for fMRI. Scan, 2, 67–70

  • Pratte, M., Rouder, J., Morey, R., & Feng, C. (2010). Exploring the differences in distributional properties between stroop and Simon effects using delta plots. Attention, Perception, & Psychophysics, 72(7), 2013–2025. doi:10.3758/APP.

    Article  Google Scholar 

  • Ridderinkhof, K. R., Scheres, A., Oosterlaan, J., & Sergeant, J. A. (2005). Delta plots in the study of individual differences: new tools reveal response inhibition deficits in the AD/HD that are eliminated by methylphenidate treatment. Journal of Abnormal Psychology, 114(2), 197–215. doi:10.1037/0021-842X.114.2.197/APP.

    Article  PubMed  Google Scholar 

  • Rothkirch, M., Schmack, K., Deserno, L., Darmohray, D., & Sterzer, P. (2014). Attentional modulation of reward processing in the human brain. Human Brain Mapping, 35(7), 3036–3051. doi:10.1002/hbm.22383.

    Article  PubMed  Google Scholar 

  • Seidman, L. J., Breiter, H. C., Goodman, J. M., Goldstein, J. M., Woodruff, P. W., O’Craven, K., Rosen, B. R. (1998). A functional magnetic resonance imaging study of auditory vigilance with low and high information processing demands. Neuropsychology, 12(4), 505–518. doi:10.1037/0894-4105.12.4.505

  • Smith, D. V., Rigney, A. E., & Delgado, M. R. (2016). Distinct reward properties are encoded via corticostriatal interactions. Scientific Reports, 6(August 2015), 20093. doi:10.1038/srep20093

  • Soutschek, A., Strobach, T., & Schubert, T. (2013). Motivational and cognitive determinants of control during conflict processing. Cognition & Emotion, 00(May 2014), 37–41. doi:10.1080/02699931.2013.870134.

    Google Scholar 

  • Soutschek, A., Stelzel, C., Paschke, L., Walter, H., & Schubert, T. (2014). Dissociable effects of motivation and expectancy on conflict processing: an fMRI study. Journal of Cognitive Neuroscience, 1–10. doi:10.1162/jocn.

  • Staudinger, M. R., Erk, S., & Walter, H. (2011). Dorsolateral prefrontal cortex modulates striatal reward encoding during reappraisal of reward anticipation. Cerebral Cortex (New York, N.Y. : 1991), 21(11), 2578–2588. doi:10.1093/cercor/bhr041.

    Google Scholar 

  • Stoppel, C. M., Boehler, C. N., Strumpf, H., Heinze, H. J., Hopf, J. M., & Schoenfeld, M. A. (2011). Neural processing of reward magnitude under varying attentional demands. Brain Research, 1383, 218–229. doi:10.1016/j.brainres.2011.01.095.

    Article  CAS  PubMed  Google Scholar 

  • Stroop, J. R. (1935). Studies of Interference in Serial Verbal Reactions, 18(6), 643–662.

  • Tanaka, S. C., Doya, K., Okada, G., Ueda, K., Okamoto, Y., & Yamawaki, S. (2016). Prediction of immediate and future rewards differentially recruits cortico-basal ganglia loops. Behavioral Economics of Preferences, Choices, and Happiness, (June),, 593–616. doi:10.1007/978-4-431-55402-8_22.

  • Tricomi, E. M., Delgado, M. R., & Fiez, J. A. (2004). Modulation of caudate activity by action contingency. Neuron, 41(2), 281–292 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14741108.

    Article  CAS  PubMed  Google Scholar 

  • van Steenbergen, H., Band, G. P. H., & Hommel, B. (2009). Reward counteracts conflict adaptation. Evidence for a role of affect in executive control. Psychological Science, 20(12), 1473–1477. doi:10.1111/j.1467-9280.2009.02470.x.

    Article  PubMed  Google Scholar 

  • Vanderhasselt, M. A., & De Raedt, R. (2009). Impairments in cognitive control persist during remission from depression and are related to the number of past episodes: an event related potentials study. Biological Psychology, 81(3), 169–176. doi:10.1016/j.biopsycho.2009.03.009.

    Article  CAS  PubMed  Google Scholar 

  • Veling, H., & Aarts, H. (2010). Cueing task goals and earning money: relatively high monetary rewards reduce failures to act on goals in a stroop task. Motivation and Emotion, 34(2), 184–190. doi:10.1007/s11031-010-9160-2

  • Watanabe, M., & Sakagami, M. (2007). Integration of cognitive and motivational context information in the primate prefrontal cortex. Cerebral Cortex (New York, N.Y. : 1991), 17 Suppl 1, i101–i109. doi:10.1093/cercor/bhm067

  • Wylie, S. A., van der Wildenberg, W. P. M., Ridderingkhof, K. R., Bashore, T. R., Powel, V. D., Manning, C. A., & Wooten, G. F. (2009). The effect of Parkinson's disease on interference control during action selection. Neuropsychologia, 47(1), 145–157. doi:10.1016/jneuropsychologia.2008.08.001.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research has been supported by Grants PSI2012-33054 from the Spanish Ministry of Economy and Competitiveness, and by 2011I040 from the Spanish National Drug Strategy to ABL. Rosell-Negre P, Bustamante JC, Fuentes P, Costumero V, Benabarre S and Barrós Loscertales declare that they have no conflict of interest.

All the procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Declaration of Helsinki (1975), and the applicable revisions at the time that this research was underway. Informed consent to be included in the study was obtained from all the patients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Barrós-Loscertales.

Electronic Supplementary Material

ESM 1

(DOC 282 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosell-Negre, P., Bustamante, J.C., Fuentes-Claramonte, P. et al. Monetary reward magnitude effects on behavior and brain function during goal-directed behavior. Brain Imaging and Behavior 11, 1037–1049 (2017). https://doi.org/10.1007/s11682-016-9577-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-016-9577-7

Keywords

Navigation