Brain Imaging and Behavior

, Volume 11, Issue 4, pp 986–997 | Cite as

Motor sequence learning in the elderly: differential activity patterns as a function of hand modality

  • Luis Eudave
  • Maite Aznárez-Sanado
  • Elkin O. Luis
  • Martín Martínez
  • María A. Fernández-Seara
  • María A. PastorEmail author
Original Research


Previous research on motor sequence learning (MSL) in the elderly has focused mainly on unilateral tasks, even though bilateral coordination might be impaired in this age group. In this fMRI study, 28 right-handed elderly subjects were recruited. The paradigm consisted of a Novel and a simple Control sequence executed with the right (R), left (L) and both hands (B). Behavioral performance (Accuracy[AC], Inter-tap Interval[ITI]) and associated brain activity were assessed during early learning. Behavioral performance in the Novel task was similar between unilateral conditions whereas in the bimanual condition more errors and slower motor execution were observed. Brain activity increases during learning showed differences between Conditions: R showed increased activity in pre-SMA, basal ganglia and left hippocampus while B showed activity increments mainly in posterior parietal cortex and cerebellum. L did not show any activity modulation during learning. Performance correlates for AC (related to spatial success) and ITI (related to accurate timing) shared a cortico-basal-cerebellar network. However, it was found that the ITI regressor presented additional significant correlations with activity in SMA and basal ganglia in R. The AC regressor showed additional significant correlations with activity in more extended thalamic and cerebellar areas in B. The present findings suggest that, behaviorally, the spatial and temporal components of MSL are impaired in elderly subjects when using both hands. Additionally, differential brain activity patterns were found across hand modalities. The results obtained reveal the existence of a highly specialized network in the dominant hand and identify areas specifically involved in bimanual coordination.


Motor sequence learning Timing Accuracy Bimanual fMRI 


Compliance with ethical standards


This project has been supported by grants from Fundación para la Investigación Médica Aplicada (FIMA), Universidad de Navarra and Centro de Investigación Biomédica de Red de Enfermedades Neurodegenerativas (CIBERNED). Luis Eudave is supported by a grant from the Friends of the University of Navarra Association.

Conflict of interest

The authors declared that they have no conflict of interest.

Ethical approval

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all patients for being included in the study.

Supplementary material

11682_2016_9569_MOESM1_ESM.docx (92 kb)
Supplementary Figure 1 (DOCX 91 kb)
11682_2016_9569_MOESM2_ESM.docx (34 kb)
Supplementary Figure 2 (DOCX 34 kb)
11682_2016_9569_MOESM3_ESM.docx (16 kb)
Supplementary Table 1 (DOCX 16 kb)
11682_2016_9569_MOESM4_ESM.docx (21 kb)
Supplementary Table 2 (DOCX 20 kb)
11682_2016_9569_MOESM5_ESM.docx (18 kb)
Supplementary Table 3 (DOCX 18 kb)
11682_2016_9569_MOESM6_ESM.docx (20 kb)
Supplementary Table 4 (DOCX 20 kb)
11682_2016_9569_MOESM7_ESM.docx (13 kb)
Supplementary Table 5 (DOCX 12 kb)


  1. Albouy, G., Sterpenich, V., Balteau, E., Vandewalle, G., Desseilles, M., Dang-Vu, T., Darsaud, A., Ruby, P., Luppi, P., Degueldre, C., Peigneux, P., Luxen, A., Maquet, P., 2008. Both the hippocampus and striatum are involved in consolidation of motor sequence memory. 58(2):261-72Google Scholar
  2. Albouy, G., Fogel, S., King, B. R., Laventure, S., Carrier, J., Doyon, J., Benali, H., Karni, A., & Robertson, E. M. (2015). Maintaining vs. enhancing motor sequence memories: respective roles of striatal and hippocampal systems. NeuroImage, 108, 423–434.CrossRefPubMedGoogle Scholar
  3. Aznarez-Sanado, M., Fernandez-Seara, M., Loayza, F., & Pastor, M. (2013). Functional asymmetries in early learning during right, left, and bimanual performance in right-handed subjects. Journal of Magnetic Resonance Imaging, 37, 619.CrossRefPubMedGoogle Scholar
  4. Bangert, A. S., Reuter-Lorenz, P., Walsh, C. M., Schachter, A. B., & Seidler, R. D. (2010). Bimanual coordination and aging: neurobehavioral implications. Neuropsychologia, 48, 1165–1170.CrossRefPubMedGoogle Scholar
  5. Bhakuni, R., & Mutha, P. K. (2015a). Learning of bimanual motor sequences in normal aging. Frontiers in Aging Neuroscience, 7, 76–76.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bhakuni, R., & Mutha, P. K. (2015b). Learning of bimanual motor sequences in normal aging. Frontiers in Aging Neuroscience, 7, 76.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen, S. H. A., & Desmond, J. E. (2005). Temporal dynamics of cerebro-cerebellar network recruitment during a cognitive task. Neuropsychologia, 43, 1227–1237.CrossRefPubMedGoogle Scholar
  8. Daselaar, S. M., Rombouts, S. A. R. B., Veltman, D. J., Raaijmakers, J. G. W., & Jonker, C. (2003). Similar network activated by young and old adults during the acquisition of a motor sequence. Neurobiology of Aging, 24, 1013–1019.CrossRefPubMedGoogle Scholar
  9. Debaere, F., Wenderoth, N., Sunaert, S., Van Hecke, P., & Swinnen, S. P. (2004a). Changes in brain activation during the acquisition of a new bimanual coodination task. Neuropsychologia, 42, 855–867.CrossRefPubMedGoogle Scholar
  10. Debaere, F., Wenderoth, N., Sunaert, S., Van Hecke, P., & Swinnen, S. P. (2004b). Cerebellar and premotor function in bimanual coordination: parametric neural responses to spatiotemporal complexity and cycling frequency. NeuroImage, 21, 1416–1427.CrossRefPubMedGoogle Scholar
  11. Diedrichsen, J. (2006). A spatially unbiased atlas template of the human cerebellum. NeuroImage, 33, 127–138.CrossRefPubMedGoogle Scholar
  12. Doyon, J., Laforce, R. J., Bouchard, G., Gaudreau, D., Roy, J., Poirier, M., Bédard, P. J., Bédard, F., & Bouchard, J. (1998). Role of the striatum, cerebellum and frontal lobes in the automatization of a repeated visuomotor sequence of movements. Neuropsychologia, 36, 625–641.CrossRefPubMedGoogle Scholar
  13. Doyon, J., Song, A. W., Karni, A., Lalonde, F., Adams, M. M., & Ungerleider, L. G. (2002). Experience-dependent changes in cerebellar contributions to motor sequence learning. Proceedings of the National Academy of Sciences of the United States of America, 99, 1017.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Doyon, J., Penhune, V., & Ungerleider, L. G. (2003). Distinct contribution of the cortico-striatal and cortico-cerebellar systems to motor skill learning. Neuropsychologia, 41, 252–262.CrossRefPubMedGoogle Scholar
  15. Doyon, J., Bellec, P., Amsel, R., Penhune, V., Monchi, O., Carrier, J., Lehericy, S., & Benali, H. (2009). Contributions of the basal ganglia and functionally related brain structures to motor learning. Behavioural Brain Research, 199, 61.CrossRefPubMedGoogle Scholar
  16. Fernández-Seara, M. A., Aznárez-Sanado, M., Mengual, E., Loayza, F. R., & Pastor, M. A. (2009). Continuous performance of a novel motor sequence leads to highly correlated striatal and hippocampal perfusion increases. NeuroImage, 47, 1797–1808.CrossRefPubMedGoogle Scholar
  17. Gheysen, F., Van Opstal, F., Roggeman, C., Van Waelvelde, H., & Fias, W. (2010). Hippocampal contribution to early and later stages of implicit motor sequence learning. Experimental Brain Research, 202(4), 795–807.CrossRefPubMedGoogle Scholar
  18. Ghilardi, M. F., Moisello, C., Silvestri, G., Ghez, C., & Krakauer, J. W. (2009). Learning of a sequential motor skill comprises explicit and implicit components that consolidate differently. Journal of Neurophysiology, 101, 2218–2229.CrossRefPubMedGoogle Scholar
  19. Graziadio, S., Nazarpour, K., Gretenkord, S., Jackson, A., & Eyre, J. A. (2015). Greater intermanual transfer in the elderly suggests age-related bilateral motor cortex activation is compensatory. Journal of Motor Behavior, 47, 47–55.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hoff, M., Ragert, P., 2015. Switching between hands in a serial reaction time task: A comparison between young and old adults. 7, 176Google Scholar
  21. Hoff, M., Trapp, S., Kaminski, E., Sehm, B., Steele, C. J., Villringer, A., & Ragert, P. (2015). Switching between hands in a serial reaction time task: a comparison between young and old adults. Frontiers in Aging Neuroscience, 7, 176–176.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Howard, D. V., Howard, J. H. J., Japikse, K., DiYanni, C., Thompson, A., & Somberg, R. (2004). Implicit sequence learning: effects of level of structure, adult age, and extended practice. Psychology and Aging, 19, 79–92.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Jäncke, J. H. R., Specht, K., Mirzazade, S., & Peters, M. (1999). The effect of finger-movement speed of the dominant and the subdominant hand on cerebellar activation. A functional magnetic resonance imaging study., 9(5), 497–507.Google Scholar
  24. King, B. R., Fogel, S. M., Albouy, G., & Doyon, J. (2013). Neural correlates of the age-related changes in motor sequence learning and motor adaptation in older adults. Frontiers in Human Neuroscience, 7, 142.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Klein, A., Andersson, J., Ardekani, B. A., Ashburner, J., Avants, B., Chiang, M., Christensen, G. E., Collins, D. L., Gee, J., Hellier, P., Song, J. H., Jenkinson, M., Lepage, C., Rueckert, D., Thompson, P., Vercauteren, T., Woods, R. P., Mann, J. J., & Parsey, R. V. (2009). Evaluation of 14 nonlinear deformation algorithms applied to human brain MRI registration. NeuroImage, 46, 786–802.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lehéricy, S., Benali, H., Van, D. M., Pélégrini-Issac, M., Waechter, T., Ugurbil, K., Doyon, J., & Ungerleider, L. G. (2005). Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proceedings of the National Academy of Sciences of the United States of America, 102, 12566.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Luis, E. O., Arrondo, G., Vidorreta, M., Martínez, M., Loayza, F., Fernández-Seara, M. A., & Pastor, M. A. (2015). Successful working memory processes and cerebellum in an elderly sample: a neuropsychological and fMRI study. PloS One, 10, e0131536.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Müller, R., Kleinhaus, N., Pierce, K., Kemmotsu, N., & Courchesne, E. (2002). Functional MRI of motor sequence acquisition: effects of learning stage and performance. Cognitive Brain Research, 14, 277–293.CrossRefPubMedGoogle Scholar
  29. Muller, R. A., Kleinhans, N., Pierce, K., Kemmotsu, N., & Courchesne, E. (2002). Functional MRI of motor sequence acquisition: effects of learning stage and performance. Cognitive Brain Research, 14, 277–293.CrossRefPubMedGoogle Scholar
  30. Nair, D. G., Purcott, K. L., Fuchs, A., Steinberg, F., & Kelso, J. A. S. (2003). Cortical and cerebellar activity of the human brain during imagined and executed unimanual and bimanual action sequences: a functional MRI study. Cognitive Brain Research, 15, 250–260.CrossRefPubMedGoogle Scholar
  31. O’Reilly, J. X., Beckmann, C. F., Tomassini, V., Johansen-Berg, H., & Ramnani, N. (2010). Distinct and overlapping functional zones in the cerebellum defined by resting state functional connectivity. Cerebral Cortex, 20, 953–965.CrossRefPubMedGoogle Scholar
  32. Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9, 97–113.CrossRefPubMedGoogle Scholar
  33. Penhune, V. B., & Steele, C. J. (2012). Parallel contributions of cerebellar, striatal and M1 mechanisms to motor sequence learning. Behavioural Brain Research, 226, 579–591.CrossRefPubMedGoogle Scholar
  34. Reuter-Lorenz, P., & Cappell, K. A. (2008). Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science, 17, 177.CrossRefGoogle Scholar
  35. Rieckmann, A., Fischer, H., & Backman, L. (2010). Activation in striatum and medial temporal lobe during sequence learning in younger and older adults: relations to performance. NeuroImage, 50, 1303.CrossRefPubMedGoogle Scholar
  36. Sadato, N., Yonekura, Y., Waki, A., Yamada, H., & Ishii, Y. (1997). Role of the supplementary motor area and the right premotor cortex in the coordination of bimanual finger movements. The Journal of Neuroscience., 17, 9667–9674.PubMedGoogle Scholar
  37. Schendan, H. E., Searl, M. M., Melrose, R. J., & Stern, C. E. (2003). An fMRI study of the role of the medial temporal lobe in implicit and explicit sequence learning. Neuron, 37, 1013–1025.CrossRefPubMedGoogle Scholar
  38. Schendan, H. E., Tinaz, S., Maher, S. M., & Stern, C. E. (2013). Frontostriatal and mediotemporal lobe contributions to implicit higher-order spatial sequence learning declines in aging and parkinson’s disease. Behavioral Neuroscience, 127, 204–221.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Schulz, R., Wessel, M. J., Zimerman, M., Timmermann, J. E., Gerloff, C., & Hummel, F. C. (2015). White matter integrity of specific dentato-thalamo-cortical pathways is associated with learning gains in precise movement timing. Cerebral Cortex, 25, 1707–1714.CrossRefPubMedGoogle Scholar
  40. Seidler, R. D., Bernard, J. A., Burutolu, T. B., Fling, B. W., Gordon, M. T., Gwin, J. T., Kwak, Y., & Lipps, D. B. (2010). Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neuroscience and Biobehavioral Reviews, 34, 721–733.CrossRefPubMedGoogle Scholar
  41. Serrien, D. J. (2008). Coordination constraints during bimanual versus unimanual performance conditions. Neuropsychologia, 46, 419–425.CrossRefPubMedGoogle Scholar
  42. Serrien, D. J. (2009). Functional connectivity patterns during motor behaviour: the impact of past on present activity. Human Brain Mapping, 30, 523–531.CrossRefPubMedGoogle Scholar
  43. Serrien, D. J., Swinnen, S. P., & Stelmach, G. E. (2000). Age-related deterioration of coordinated interlimb behavior. Journals of Gerontology: Series B., 55(5), P295–P303.CrossRefGoogle Scholar
  44. Steele, C. J., & Penhune, V. B. (2010). Specific increases within global decreases: a functional magnetic resonance imaging investigation of five days of motor sequence learning. The Journal of Neuroscience., 30, 8332–8341.CrossRefPubMedGoogle Scholar
  45. Stoodley, C. J., & Schmahmann, J. D. (2009). Functional topography in the human cerebellum: a meta-analysis of neuroimaging studies. NeuroImage, 44, 489–501.CrossRefPubMedGoogle Scholar
  46. Swinnen, S.P., Wenderoth, N., 2004. Two hands, one brain: Cognitive neuroscience of bimanual skill. Trends Cogn. Sci. (Regul. Ed. ). 8, 18–25.Google Scholar
  47. Verneau, M., van, D. K., Savelsbergh, G. J. P., & de Looze, M. P. (2014). Age and time effects on implicit and explicit learning. Experimental Aging Research, 40, 477–511.CrossRefPubMedGoogle Scholar
  48. Wadden, K., Brown, K., Maletsky, R., & Boyd, L. A. (2013). Correlations between brain activity and components of motor learning in middle- aged adults: an fMRI study. Frontiers in Human Neuroscience, 7, 16.CrossRefGoogle Scholar
  49. Walsh, R. R., Small, S. L., Chen, E. E., & Solodkin, A. (2008). Network activation during bimanual movements in humans. NeuroImage, 43, 540–553.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Wang, J., & Sainburg, R. L. (2009). Generalization of visuomotor learning between bilateral and unilateral conditions. Journal of Neurophysiology, 102, 2790–2799.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Luis Eudave
    • 1
  • Maite Aznárez-Sanado
    • 1
    • 2
    • 3
  • Elkin O. Luis
    • 1
    • 2
    • 3
  • Martín Martínez
    • 1
  • María A. Fernández-Seara
    • 1
    • 2
    • 4
  • María A. Pastor
    • 1
    • 2
    • 3
    • 5
    Email author
  1. 1.Neuroimaging Laboratory, Division of Neurosciences, Center for Applied Medical Research University of NavarraUniversity of Navarra CampusPamplonaSpain
  2. 2.CIBERNED, Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Instituto de Salud Carlos IIIMadridSpain
  3. 3.School of Education and PsychologyUniversity of NavarraPamplonaSpain
  4. 4.Department of RadiologyUniversity of Navarra Hospital, University of Navarra School of MedicinePamplonaSpain
  5. 5.Department of NeurologyUniversity of Navarra Hospital, University of Navarra School of MedicinePamplonaSpain

Personalised recommendations