Skip to main content
Log in

Contributions of self-report and performance-based individual differences measures of social cognitive ability to large-scale neural network functioning

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Adaptive social behavior appears to require flexible interaction between multiple large-scale brain networks, including the executive control network (ECN), the default mode network (DMN), and the salience network (SN), as well as interactions with the perceptual processing systems these networks function to modulate. Highly connected cortical “hub” regions are also thought to facilitate interactions between these networks, including the dorsolateral prefrontal cortex (DLPFC), dorsomedial prefrontal cortex (DMPFC), anterior cingulate cortex (ACC), and anterior insula (AI). However, less is presently known about the relationship between these network functions and individual differences in social-cognitive abilities. In the present study, 23 healthy adults (12 female) underwent functional magnetic resonance imaging (fMRI) while performing a visually based social judgment task (requiring the evaluation of social dominance in faces). Participants also completed both self-report and performance-based measures of emotional intelligence (EI), as well as measures of personality and facial perception ability. During scanning, social judgment, relative to a control condition involving simple perceptual judgment of facial features in the same stimuli, activated hub regions associated with each of the networks mentioned above (observed clusters included: bilateral DLPFC, DMPFC/ACC, AI, and ventral visual cortex). Interestingly, self-reported and performance-based measures of social-cognitive ability showed opposing associations with these patterns of activation. Specifically, lower self-reported EI and lower openness in personality both independently predicted greater activation within hub regions of the SN, DMN, and ECN (i.e., the DLPFC, DMPFC/ACC, and AI clusters); in contrast, in the same analyses greater scores on performance-based EI measures and on facial perception tasks independently predicted greater activation within hub regions of the SN and ECN (the DLPFC and AI clusters), and also in the ventral visual cortex. These findings suggest that lower confidence in one’s own social-cognitive abilities may promote the allocation of greater cognitive resources to, and improve the performance of, social-cognitive functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adolphs, R. (2009). The social brain: neural basis of social knowledge. Annual Review of Psychology, 60, 693–716. doi:10.1146/annurev.psych.60.110707.163514.

    Article  PubMed  PubMed Central  Google Scholar 

  • Amodio, D. M., & Frith, C. D. (2006). Meeting of minds: the medial frontal cortex and social cognition. Nature Reviews Neuroscience, 7(4), 268–277.

    Article  CAS  PubMed  Google Scholar 

  • Bar-On, R. (2006). BarOn Emotional Quotient Inventory: a measure of emotional intelligence – technical manual. North Tonawanda, NY: Multi-Health Systems.

    Google Scholar 

  • Bar-On, R., Tranel, D., Denburg, N., & Bechara, A. (2003). Exploring the neurological substrate of emotional and social intelligence. Brain, 126(Pt 8), 1790–1800. doi:10.1093/brain/awg177.

    Article  PubMed  Google Scholar 

  • Barbey, A., Colom, R., & Grafman, J. (2014). Distributed neural system for emotional intelligence revealed by lesion mapping. Social Cognitive and Affective Neuroscience, 9(3), 265–272. doi:10.1093/scan/nss124.

    Article  PubMed  Google Scholar 

  • Barrett, L., & Satpute, A. (2013). Large-scale brain networks in affective and social neuroscience: towards an integrative functional architecture of the brain. Current Opinion in Neurobiology, 23(3), 361–372. doi:10.1016/j.conb.2012.12.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barrett, L., & Simmons, W. (2015). Interoceptive predictions in the brain. Nature reviews. Neuroscience, 16(7), 419–429. doi:10.1038/nrn3950.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bowerman, B., & O’Connell, R. (1990). Linear statistical models: An applied approach (2nd ed.). Belmont, CA: Duxbury.

    Google Scholar 

  • Brackett, M., Rivers, S., Shiffman, S., Lerner, N., & Salovey, P. (2006). Relating emotional abilities to social functioning: a comparison of self-report and performance measures of emotional intelligence. Journal of Personality and Social Psychology, 91(4), 780–795. doi:10.1037/0022-3514.91.4.780.

    Article  PubMed  Google Scholar 

  • Brown, H., Friston, K., & Bestmann, S. (2011). Active inference, attention, and motor preparation. Frontiers in Psychology, 2, 218. doi:10.3389/fpsyg.2011.00218.

    PubMed  PubMed Central  Google Scholar 

  • Conte, J. (2005). A review and critique of emotional intelligence measures. Journal of Organizational Behavior, 26(4), 433–440. doi:10.1002/job.319.

    Article  Google Scholar 

  • Costa, P. (1996). Work and personality: use of the NEO-PI-R in industrial/organisational psychology. Applied Psychology, 45, 225–241.

    Article  Google Scholar 

  • Costa, P., & McCrae, R. (1992). Revised NEO Personality Inventory (NEOPI- R) and NEO Five-Factor Inventory (NEO-FFI) professional manual. Odessa, FL: Psychological Assessment Resources, Inc..

    Google Scholar 

  • Costa, P., & McCrae, R. (1995). Primary traits of Eysenck’s P-E-N system: three- and five-factor solutions. Journal of Personality and Social Psychology, 69, 308–317.

    Article  PubMed  Google Scholar 

  • Davis, S., & Humphrey, N. (2012). Emotional intelligence predicts adolescent mental health beyond personality and cognitive ability. Personality and Individual Differences, 52(2), 144–149. doi:10.1016/j.paid.2011.09.016.

    Article  Google Scholar 

  • Decety, J., & Sommerville, J. (2003). Shared representations between self and other: a social cognitive neuroscience view. Trends in Cognitive Sciences, 7, 527–533.

    Article  PubMed  Google Scholar 

  • Dosenbach, N., Fair, D., Cohen, A., Schlaggar, B., & Petersen, S. (2008). A dual-networks architecture of top-down control. Trends in Cognitive Sciences, 12(3), 99–105. doi:10.1016/j.tics.2008.01.001.

    Article  PubMed  PubMed Central  Google Scholar 

  • Druzgal, T., & D’Esposito, M. (2001a). Activity in fusiform face area modulated as a function of working memory load. Cognitive Brain Research, 10(3), 355–364. doi:10.1016/S0926-6410(00)00056-2.

    Article  CAS  PubMed  Google Scholar 

  • Druzgal, T., & D’Esposito, M. (2001b). A neural network reflecting decisions about human faces. Neuron, 32(5), 947–955. doi:10.1016/S0896-6273(01)00519-0.

    Article  CAS  PubMed  Google Scholar 

  • Ekman, P., & Friesen, W. (1976). Pictures of facial Affect. Palo Alto, CA: Consulting Psychologists Press.

    Google Scholar 

  • Feldman, H., & Friston, K. (2010). Attention, uncertainty, and free-energy. Frontiers in Human Neuroscience, 4, 215. doi:10.3389/fnhum.2010.00215.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fernández-Berrocal, P., Alcaide, R., Extremera, N., & Pizarro, D. (2006). The role of emotional intelligence in anxiety and depression among adolescents. Individual Differences Research, 4(1), 16–27.

    Google Scholar 

  • Field, A. (2013). Discovering statistics using IBM SPSS statistics (4th ed.). SAGE Publications.

  • Freeman, J., Rule, N., Adams, R., & Ambady, N. (2009). Culture shapes a mesolimbic response to signals of dominance and subordination that associates with behavior. NeuroImage, 47(1), 353–359. doi:10.1016/j.neuroimage.2009.04.038.

    Article  PubMed  Google Scholar 

  • Frith, C., & Frith, U. (2006). The neural basis of mentalizing. Neuron, 50(4), 531–534.

    Article  CAS  PubMed  Google Scholar 

  • Fusar-Poli, P., Placentino, A., Carletti, F., Allen, P., Landi, P., Abbamonte, M., et al. (2009b). Laterality effect on emotional faces processing: ALE meta-analysis of evidence. Neuroscience Letters, 452(3), 262–267. doi:10.1016/j.neulet.2009.01.065.

    Article  CAS  PubMed  Google Scholar 

  • Fusar-Poli, P., Placentino, A., Carletti, F., Landi, P., Allen, P., Surguladze, S., et al. (2009a). Functional atlas of emotional faces processing: a voxel-based meta-analysis of 105 functional magnetic resonance imaging studies. Journal of Psychiatry and Neuroscience, 34(6), 418–432.

    PubMed  PubMed Central  Google Scholar 

  • Goldenberg, I., Matheson, K., & Mantler, J. (2006). The assessment of emotional intelligence: a comparison of performance-based and self-report methodologies. Journal of Personality Assessment, 86(1), 33–45. doi:10.1207/s15327752jpa8601_05.

    Article  PubMed  Google Scholar 

  • Gu, X., Hof, P., Friston, K., & Fan, J. (2013). Anterior insular cortex and emotional awareness. The Journal of Comparative Neurology, 521(15), 3371–3388. doi:10.1002/cne.23368.

    Article  PubMed  PubMed Central  Google Scholar 

  • Harms, P., & Crede, M. (2010). Remaining issues in emotional intelligence research: construct overlap, method artifacts, and lack of incremental validity. Industrial and Organizational Psychology, 3(2), 154–158. doi:10.1111/j.1754-9434.2010.01217.x.

    Article  Google Scholar 

  • Heatherton, T. (2006). Medial prefrontal activity differentiates self from close others. Social Cognitive and Affective Neuroscience, 1, 18–25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hertel, J., Schütz, A., & Lammers, C.-H. (2009). Emotional intelligence and mental disorder. Journal of Clinical Psychology, 65(9), 942–954. doi:10.1002/jclp.20597.

    Article  PubMed  Google Scholar 

  • Keysers, C., Kaas, J. H., & Gazzola, V. (2010). Somatosensation in social perception. Nature reviews. Neuroscience, 11(6), 417–428. doi:10.1038/nrn2833.

    CAS  PubMed  Google Scholar 

  • Killgore, W., Schwab, Z., Tkachenko, O., Webb, C., DelDonno, S., Kipman, M., et al. (2013). Emotional intelligence correlates with functional responses to dynamic changes in facial trustworthiness. Social Neuroscience, 8(4), 334–346. doi:10.1080/17470919.2013.807300.

    Article  PubMed  Google Scholar 

  • Killgore, W., Weber, M., Schwab, Z., DelDonno, S., Kipman, M., Weiner, M., & Rauch, S. (2012). Gray matter correlates of trait and ability models of emotional intelligence. Neuroreport, 23(9), 551–555. doi:10.1097/WNR.0b013e32835446f7.

    Article  PubMed  Google Scholar 

  • Killgore, W., & Yurgelun-Todd, D. (2007). Neural correlates of emotional intelligence in adolescent children. Cognitive, Affective, & Behavioral Neuroscience, 7(2), 140–151. doi:10.3758/CABN.7.2.140.

    Article  Google Scholar 

  • Krauzlis, R., Lovejoy, L., & Zénon, A. (2013). Superior colliculus and visual spatial attention. Annual Review of Neuroscience, 36, 165–182. doi:10.1146/annurev-neuro-062012-170249.

    Article  CAS  PubMed  Google Scholar 

  • Li, W., Mai, X., & Liu, C. (2014). The default mode network and social understanding of others: what do brain connectivity studies tell us. Frontiers in Human Neuroscience, 8, 74. doi:10.3389/fnhum.2014.00074.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lindquist, K., & Barrett, L. (2012). A functional architecture of the human brain: emerging insights from the science of emotion. Trends in Cognitive Sciences, 16(11), 533–540. doi:10.1016/j.tics.2012.09.005.

    Article  PubMed  PubMed Central  Google Scholar 

  • Locke, E. (2005). Why emotional intelligence is an invalid concept. Journal of Organizational Behavior, 26(4), 425–431. doi:10.1002/job.318.

    Article  Google Scholar 

  • Lombardo, M. V., Chakrabarti, B., Bullmore, E. T., Wheelwright, S. J., Sadek, S. A., Suckling, J., & Baron-Cohen, S. (2010). Shared neural circuits for mentalizing about the self and others. Journal of Cognitive Neuroscience, 22(7), 1623–1635. doi:10.1162/jocn.2009.21287.

    Article  PubMed  Google Scholar 

  • Lopes, P., Salovey, P., Coté, S., & Beers, M. (2005). Emotion regulation abilities and the quality of social interaction. Emotion, 5(1), 113–118. doi:10.1037/1528-3542.5.1.113.

    Article  PubMed  Google Scholar 

  • Mayer, J., Salovey, P., & Caruso, D. (2002). Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT) – User’s Manual. North Tonawanda, NY: Multi-Health Systems.

    Google Scholar 

  • Mayer, J., Salovey, P., & Caruso, D. (2004). Emotional intelligence: theory, findings, and implications. Psychological Inquiry, 15(3), 197–215.

    Article  Google Scholar 

  • Mayer, J., Salovey, P., Caruso, D., & Sitarenios, G. (2001). Emotional intelligence as a standard intelligence. Emotion, 1(3), 232–242.

    Article  CAS  PubMed  Google Scholar 

  • Meyer, M., Taylor, S., & Lieberman, M. (2015). Social working memory and its distinctive link to social cognitive ability: an fMRI study. Social cognitive and affective neuroscience, nsv065–. doi:10.1093/scan/nsv065

  • O’Boyle, E., Humphrey, R., Pollack, J., Hawver, T., & Story, P. (2011). The relation between emotional intelligence and job performance: A meta-analysis. Journal of Organizational Behavior, 32(5), 788–818. doi:10.1002/job.714.

    Article  Google Scholar 

  • O’Craven, K. M., & Kanwisher, N. (2000). Mental imagery of faces and places activates corresponding stimulus-specific brain regions. Journal of Cognitive Neuroscience, 12(6), 1013–1023. doi:10.1162/08989290051137549.

    Article  PubMed  Google Scholar 

  • Oosterwijk, S., Lindquist, K., Anderson, E., Dautoff, R., Moriguchi, Y., & Barrett, L. (2012). States of mind: emotions, body feelings, and thoughts share distributed neural networks. NeuroImage, 62(3), 2110–2128. doi:10.1016/j.neuroimage.2012.05.079.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pan, W., Wang, T., Wang, X., Hitchman, G., Wang, L., & Chen, A. (2014). Identifying the Core Components of Emotional Intelligence : Evidence from Amplitude of Low-Frequency Fluctuations during Resting State, 9(10), 1–8. doi:10.1371/journal.pone.0111435

  • Pérez, J., Petrides, K., & Furnham, A. (2005). Measuring trait emotional intelligence. In R. Schulze & R. Roberts (Eds.), Emotional intelligence: An International Handbook (pp. 181–202). Hogrefe.

  • Petrides, K., Pita, R., & Kokkinaki, F. (2007). The location of trait emotional intelligence in personality factor space. British journal of psychology (London, England : 1953), 98(Pt 2), 273–289. doi:10.1348/000712606X120618.

    CAS  Google Scholar 

  • Petrides, K. V. (2011). Ability and trait emotional intelligence. The Wiley-Blackwell Handbook of Individual Differences, 656–678. doi:10.1002/9781444343120.ch25.

  • Power, J., & Petersen, S. (2013). Control-related systems in the human brain. Current Opinion in Neurobiology, 23(2), 223–228. doi:10.1016/j.conb.2012.12.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberts, R., Schulze, R., O’Brien, K., MacCann, C., Reid, J., & Maul, A. (2006). Exploring the validity of the Mayer-Salovey-Caruso emotional intelligence test (MSCEIT) with established emotions measures. Emotion, 6(4), 663–669. doi:10.1037/1528-3542.6.4.663.

    Article  PubMed  Google Scholar 

  • Schutte, N., Malouff, J., Simunek, M., McKenley, J., & Hollander, S. (2010). Characteristic emotional intelligence and emotional well-being. Cognition and Emotion, 16(6), 769–785. doi:10.1080/02699930143000482.

    Article  Google Scholar 

  • Seidel, E., Eickhoff, S., Kellermann, T., Schneider, F., Gur, R. C., Habel, U., & Derntl, B. (2010). Who is to blame? neural correlates of causal attribution in social situations. Social Neuroscience, 5(4), 335–350. doi:10.1080/17470911003615997.

    Article  PubMed  Google Scholar 

  • Sripada, C., Angstadt, M., Kessler, D., Phan, K., Liberzon, I., Evans, G., et al. (2014). Volitional regulation of emotions produces distributed alterations in connectivity between visual, attention control, and default networks. NeuroImage, 89, 110–121. doi:10.1016/j.neuroimage.2013.11.006.

    Article  PubMed  Google Scholar 

  • Takeuchi, H., Taki, Y., Nouchi, R., Sekiguchi, A., Hashizume, H., Sassa, Y., et al. (2013a). Resting state functional connectivity associated with trait emotional intelligence. NeuroImage, 83, 318–328. doi:10.1016/j.neuroimage.2013.06.044.

    Article  PubMed  Google Scholar 

  • Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Fukushima, A., & Kawashima, R. (2011). Regional gray matter density associated with emotional intelligence: evidence from voxel-based morphometry. Human Brain Mapping, 32(9), 1497–1510. doi:10.1002/hbm.21122.

    Article  PubMed  Google Scholar 

  • Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Nagase, T., et al. (2013b). White matter structures associated with emotional intelligence: evidence from diffusion tensor imaging. Human Brain Mapping, 34(5), 1025–1034. doi:10.1002/hbm.21492.

    Article  PubMed  Google Scholar 

  • Tan, Y., Zhang, Q., Li, W., Wei, D., Qiao, L., Qiu, J., et al. (2014). The correlation between emotional intelligence and gray matter volume in university students. Brain and Cognition, 91, 100–107. doi:10.1016/j.bandc.2014.08.007.

    Article  PubMed  Google Scholar 

  • Taylor, K., Seminowicz, D., & Davis, K. (2009). Two systems of resting state connectivity between the insula and cingulate cortex. Human Brain Mapping, 30(9), 2731–2745. doi:10.1002/hbm.20705.

    Article  PubMed  Google Scholar 

  • Todorov, A., Dotsch, R., Porter, J., Oosterhof, N., & Falvello, V. (2013). Validation of data-driven computational models of social perception of faces. Emotion, 13(4), 724–738. doi:10.1037/a0032335.

    Article  PubMed  Google Scholar 

  • Todorov, A., & Oosterhof, N. (2011). Modeling social perception of faces. Signal Processing Magazine, IEEE, 28, 117–122.

    Article  Google Scholar 

  • van den Heuvel, M., & Sporns, O. (2011). Rich-club organization of the human connectome. The Journal of Neuroscience, 31(44), 15775–15786. doi:10.1523/JNEUROSCI.3539-11.2011.

    Article  PubMed  Google Scholar 

  • van den Heuvel, M., & Sporns, O. (2013). An anatomical substrate for integration among functional networks in human cortex. The Journal of Neuroscience, 33(36), 14489–14500. doi:10.1523/JNEUROSCI.2128-13.2013.

    Article  PubMed  Google Scholar 

  • van den Heuvel, M., Stam, C., Boersma, M., & Hulshoff Pol, H. (2008). Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. NeuroImage, 43(3), 528–539. doi:10.1016/j.neuroimage.2008.08.010.

    Article  PubMed  Google Scholar 

  • Van Overwalle, F. (2009). Social cognition and the brain: a meta-analysis. Human Brain Mapping, 30(3), 829–858. doi:10.1002/hbm.20547.

    Article  PubMed  Google Scholar 

  • Vuilleumier, P., Armony, J. L., Driver, J., & Dolan, R. J. (2001). Effects of attention and emotion on face processing in the human brain: an event-related fMRI study. Neuron, 30(3), 829–841.

    Article  CAS  PubMed  Google Scholar 

  • Webb, C., Schwab, Z., Weber, M., DelDonno, S., Kipman, M., Weiner, M., & Killgore, W. (2013). Convergent and divergent validity of integrative versus mixed model measures of emotional intelligence. Intelligence, 41(3), 149–156. doi:10.1016/j.intell.2013.01.004.

    Article  Google Scholar 

  • Wechsler, D. (1999). Wechsler abbreviated scale of intelligence. Bloomington, MN: Psychological Corporation.

    Google Scholar 

  • Yeo, B., Krienen, F., Sepulcre, J., Sabuncu, M., Lashkari, D., Hollinshead, M., et al. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(3), 1125–1165. doi:10.1152/jn.00338.2011.

    Article  PubMed  Google Scholar 

  • Zaki, J., & Ochsner, K. (2012). The neuroscience of empathy: progress, pitfalls and promise. Nature Neuroscience, 15(5), 675–680. doi:10.1038/nn.3085.

    Article  CAS  PubMed  Google Scholar 

  • Zippo, A., Gelsomino, G., Van Duin, P., Nencini, S., Caramenti, G., Valente, M., & Biella, G. (2013). Small-world networks in neuronal populations: a computational perspective. Neural Networks, 44, 143–156. doi:10.1016/j.neunet.2013.04.003.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryan Smith.

Ethics declarations

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Funding

This study was funded by a USAMRAA grant to WDSK (grant number W81XWH-09-1-0730).

Conflict of interest

Ryan Smith declares that he has no conflict of Interest. Anna Alkozei declares that she has no conflict of interest. W.D. “Scott” Killgore declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smith, R., Alkozei, A. & Killgore, W.D.S. Contributions of self-report and performance-based individual differences measures of social cognitive ability to large-scale neural network functioning. Brain Imaging and Behavior 11, 685–697 (2017). https://doi.org/10.1007/s11682-016-9545-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-016-9545-2

Keywords

Navigation