Skip to main content
Log in

Decoupling of reaction time-related default mode network activity with cognitive demand

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Reaction Time (RT) is associated with increased amplitude of the Blood Oxygen-Level Dependent (BOLD) response in task positive regions. Few studies have focused on whether opposing RT-related suppression of task activity also occurs. The current study used two Go/No-go tasks with different cognitive demands to examine regions that showed greater BOLD suppression for longer RT trials. These RT-related suppression effects occurred within the DMN and were task-specific, localizing to separate regions for the two tasks. In the task requiring working memory, RT-related de-coupling of the DMN occurred. This was reflected by opposing RT-BOLD effects for different DMN regions, as well as by reduced positive RT-related Psycho-Physiological Interaction (PPI) connectivity within the DMN and a lack of negative RT-related PPI connectivity between DMN and task positive regions. The results suggest that RT-related DMN suppression is task-specific. RT-related de-coupling of the DMN with more complex task demands may contribute to lapses of attention and performance decrements that occur during cognitively-demanding tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andrews-Hanna, J. R., Reidler, J. S., Huang, C., & Buckner, R. L. (2010a). Evidence for the default network’s role in spontaneous cognition. Journal of Neurophysiology, 104, 3222335.

    Article  Google Scholar 

  • Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., & Buckner, R. L. (2010b). Functional-anatomic fractionation of the brain’s default network. Neuron, 65, 5502562.

    Article  Google Scholar 

  • Barber, A. D., Caffo, B. S., Pekar, J. J., & Mostofsky, S. H. (2013). Effects of working memory demand on neural mechanisms of motor response selection and control. Journal of Cognitive Neuroscience, 25, 1235–1248.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barber, A. D., Jacobson, L. A., Wexler, J. L., Nebel, M. B., Caffo, B. S., Pekar, J. J., & Mostofsky, S. H. (2015). Connectivity supporting attention in children with attention deficit hyperactivity disorder. NeuroImage: Clinical, 7, 68–81.

    Article  Google Scholar 

  • Barber, A. D., Pekar, J. J., & Mostofsky, S. H. (2016). Reaction time-related activity reflecting periodic, task-specific cognitive control. Behavioural Brain Research, 296, 100–108.

    Article  PubMed  Google Scholar 

  • Buckner, R. L., Andrews‐Hanna, J. R., & Schacter, D. L. (2008). The brain's default network. Annals of the New York Academy of Sciences, 1124(1), 1–38.

  • Carp, J., Kim, K., Taylor, S. F., Fitzgerald, K. D., & Weissman, D. H. (2010). Conditional differences in mean reaction time explain effects of response congruency, but not accuracy, on posterior medial frontal cortex activity. Frontiers in Human Neuroscience, 4, 231.

    Article  PubMed  PubMed Central  Google Scholar 

  • Castellanos, F. X., & Tannock, R. (2002). Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. Nature Reviews Neuroscience, 3(8), 617–628.

  • Castellanos, F. X., Sonuga-Barke, E. J., Scheres, A., Di Martino, A., Hyde, C., & Walters, J. R. (2005). Varieties of attention-deficit/hyperactivity disorder-related intra-individual variability. Biological psychiatry, 57(11), 1416–1423.

  • Esterman, M., Noonan, S. K., Rosenberg, M., & Degutis, J. (2013). In the zone or zoning out? Tracking behavioral and neural fluctuations during sustained attention. Cerebral Cortex, 23, 2712–2723.

    Article  PubMed  Google Scholar 

  • Fassbender, C., Zhang, H., Buzy, W. M., Cortes, C. R., Mizuiri, D., Beckett, L., & Schweitzer, J. B. (2009). A lack of default network suppression is linked to increased distractibility in ADHD. Brain research, 1273, 114–128.

  • Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–9678.

  • Friston, K. J., Buechel, C., Fink, G. R., Morris, J., Rolls, E., & Dolan, R. J. (1997). Psychophysiological and modulatory interactions in neuroimaging. NeuroImage, 6, 218–229.

    Article  CAS  PubMed  Google Scholar 

  • Gao, W., Gilmore, J. H., Alcauter, S., & Lin, W. (2013). The dynamic reorganization of the default-mode network during a visual classification task. Frontiers in Systems Neuroscience, 7, 34.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gitelman, D. R., Penny, W. D., Ashburner, J., & Friston, K. J. (2003). Modeling regional and psychophysiologic interactions in fMRI: the importance of hemodynamic deconvolution. NeuroImage, 19, 200–207.

    Article  PubMed  Google Scholar 

  • Grinband, J., Savitskaya, J., Wager, T. D., Teichert, T., Ferrera, V. P., & Hirsch, J. (2011). The dorsal medial frontal cortex is sensitive to time on task, not response conflict or error likelihood. NeuroImage, 57, 303–311.

    Article  PubMed  Google Scholar 

  • Henson, R. (2007). Analysis of fMRI timeseries: Linear time-invariant models, event-related fMRI and optimal experimental design. In W. Penny, K. Friston, J. Ashburner, S. Kiebel, & N. Thomas (Eds.), Statistical parametric mapping: the analysis of functional brain images. London: Elsevier.

    Google Scholar 

  • Johnson, B. P., Pinar, A., Fornito, A., Nandam, L. S., Hester, R., & Bellgrove, M. A. (2015). Left anterior cingulate activity predicts intra-individual reaction time variability in healthy adults. Neuropsychologia, 72, 22–26.

    Article  PubMed  Google Scholar 

  • Kelly, A. C., Uddin, L. Q., Biswal, B. B., Castellanos, F. X., & Milham, M. P. (2008). Competition between functional brain networks mediates behavioral variability. Neuroimage, 39(1), 527–537.

  • McKiernan, K. A., Kaufman, J. N., Kucera-Thompson, J., & Binder, J. R. (2003). A parametric manipulation of factors affecting task-induced deactivation in functional neuroimaging. Journal of cognitive neuroscience, 15(3), 394–408.

  • McLaren, D. G., Ries, M. L., Xu, G., & Johnson, S. C. (2012). A generalized form of context-dependent psychophysiological interactions (gPPI): a comparison to standard approaches. NeuroImage, 61, 1277–1286.

    Article  PubMed  PubMed Central  Google Scholar 

  • Neta, M., Schlaggar, B. L., & Petersen, S. E. (2014). Separable responses to error, ambiguity, and reaction time in cingulo-opercular task control regions. NeuroImage, 99C, 59–68.

    Article  Google Scholar 

  • O’Reilly, J. X., Woolrich, M. W., Behrens, T. E., Smith, S. M., & Johansen-Berg, H. (2012). Tools of the trade: psychophysiological interactions and functional connectivity. Social Cognitive and Affective Neuroscience, 7, 604–609.

    Article  PubMed  PubMed Central  Google Scholar 

  • Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., Vogel, A. C., Laumann, T. O., Miezin, F. M., Schlaggar, B. L., & Petersen, S. E. (2011). Functional network organization of the human brain. Neuron, 72, 665–678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prado, J., & Weissman, D. H. (2011). Heightened interactions between a key default-mode region and a key task-positive region are linked to suboptimal current performance but to enhanced future performance. NeuroImage, 56, 2276–2282.

    Article  PubMed  Google Scholar 

  • Prado, J., Carp, J., & Weissman, D. H. (2011). Variations of response time in a selective attention task are linked to variations of functional connectivity in the attentional network. NeuroImage, 54, 541–549.

    Article  PubMed  Google Scholar 

  • Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A default mode of brain function. Proceedings of the National Academy of Sciences, 98(2), 676–682.

  • Rosenberg, M. D., Finn, E. S., Constable, R. T., & Chun, M. M. (2015). Predicting moment-to-moment attentional state. NeuroImage, 114, 249–256.

    Article  PubMed  Google Scholar 

  • Spreng, R. N., Stevens, W. D., Chamberlain, J. P., Gilmore, A. W., & Schacter, D. L. (2010). Default network activity, coupled with the frontoparietal control network, supports goal-directed cognition. NeuroImage, 53, 303–317.

    Article  PubMed  PubMed Central  Google Scholar 

  • Weissman, D. H., & Carp, J. (2013). The congruency effect in the posterior medial frontal cortex is more consistent with time on task than with response conflict. PloS One, 8, e62405.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worsley, K. J., Marrett, S., Neelin, P., Vandal, A. C., Friston, K. J., & Evans, A. C. (1996). A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping, 4, 58–73.

    Article  CAS  PubMed  Google Scholar 

  • Yarkoni, T., Barch, D. M., Gray, J. R., Conturo, T. E., & Braver, T. S. (2009). BOLD correlates of trial-by-trial reaction time variability in gray and white matter: a multi-study fMRI analysis. PloS One, 4, e4257.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., Roffman, J. L., Smoller, J. W., Zollei, L., Polimeni, J. R., Fischl, B., Liu, H., & Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106, 1125–1165.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita D. Barber.

Ethics declarations

Funding

Funding for this research was provided by NIH R01 MH078160, R01 MH085328, R01 EB012547, and P41 EB015909.

Conflict of Interest

Dr. Pekar serves as Manager of the F.M. Kirby Research Center, which receives support from Philips Health Care, which makes the MRI scanners used in this study. None of the other authors have competing financial interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Total number of significant voxels and proportion of significant voxels within each network for the negative RT contrasts (top panels) and positive RT contrasts (bottom panels). Significance is assessed at a voxel-level threshold of p < 0.01 multiple comparisons-corrected at a cluster-level of p < 0.05. (DOCX 223 kb)

Fig. S2

Regions showing task differences in RT-related activity and overlap with the DMN. For task differences, significance is assessed at a voxel-level threshold of p < 0.01 for RT contrasts and multiple comparisons-corrected at a cluster-level of p < 0.05. (DOCX 742 kb)

Fig. S3

Total number of significant voxels and proportion of significant voxels within each network for RT-related task differences. Significance is assessed at a voxel-level threshold of p < 0.01 and multiple comparisons-corrected at a cluster-level of p < 0.05. (DOCX 90 kb)

Fig. S4

Total number of significant voxels and proportion of significant voxels within each network for MPFC-RT PPI Connectivity. Significance is assessed at a voxel-level threshold of p < 0.01 and multiple comparisons-corrected at a cluster-level of p < 0.05. (DOCX 205 kb)

Table S1

Regions with Significant Task Differences in RT-related Activity. The number of significant voxels that overlap with the DMN and the total number of significant voxels are displayed. (DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barber, A.D., Caffo, B.S., Pekar, J.J. et al. Decoupling of reaction time-related default mode network activity with cognitive demand. Brain Imaging and Behavior 11, 666–676 (2017). https://doi.org/10.1007/s11682-016-9543-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-016-9543-4

Keywords

Navigation