Brain Imaging and Behavior

, Volume 11, Issue 2, pp 493–502 | Cite as

Only-child and non-only-child exhibit differences in creativity and agreeableness: evidence from behavioral and anatomical structural studies

  • Junyi Yang
  • Xin Hou
  • Dongtao Wei
  • Kangcheng Wang
  • Yadan Li
  • Jiang Qiu
Original Research

Abstract

Different family composition and size inevitably make only-children different from non-only-children. Previous studies have focused on the differences in behaviors, such as cognitive function and personality traits, between the only-child and the non-only-child. However, there are few studies that have focused on the topic of whether different family environments influence children’s brain structural development and whether behavior differentially has its neural basis between only-child and non-only-child status. Thus, in the present study, we investigated the differences in cognition (e.g., intelligence and creativity) and personality and the anatomical structural differences of gray matter volume (GMV) using voxel-based morphometry (VBM) between only-children and non-only-children. The behavioral results revealed that only-children exhibited higher flexibility scores (a dimension of creativity) and lower agreeableness scores (a dimension of personality traits) than non-only-children. Most importantly, the GMV results revealed that there were significant differences in the GMV between only-children and non-only-children that occurred mainly in the brain regions of the supramarginal gyrus, which was positively correlated with flexibility scores; the medial prefrontal cortex (mPFC), which was positively correlated with agreeableness scores; and the parahippocampal gyrus. These findings may suggest that family environment (i.e., only-child vs. non-only-child), may play important roles in the development of the behavior and brain structure of individuals.

Keywords

Only-child Supramarginal gyrus Medial prefrontal cortex (mPFC) Creativity Agreeableness 

Notes

Compliance with ethical standards

Funding

This research was supported by the National Natural Science Foundation of China (31271087; 31571137, and 31500885), the National Outstanding young people plan, the Program for the Top Young Talents by Chongqing, the Fundamental Research Funds for the Central Universities (SWU1509383), the Natural Science Foundation of Chongqing (cstc2015jcyjA10106), and a General Financial Grant from the China Postdoctoral Science Foundation (2015 M572423), the Research Program Funds of the Collaborative Innovation Center of Assessment toward Basic Education Quality (2016-06-012-BZK01).

Conflict of interest

The authors declare no competing interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the Brain Imaging Center Institutional Review Board of Southwest China University and with the standards of the Declaration of Helsinki (1991).

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Albert, R. S., & Runco, M. A. (1988). Independence and the creative potential of gifted and exceptionally gifted boys. Journal of Youth and Adolescence, 18(3), 221–230.PubMedCrossRefGoogle Scholar
  2. Andrews-Hanna, J. R., Reidler, J. S., Sepulcre, J., Poulin, R., & Buckner, R. L. (2010). Functional-anatomic fractionation of the brain’s default network. Neuron, 65(4), 550–562.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Arden, R., Chavez, R. S., Grazioplene, R., & Jung, R. E. (2010). Neuroimaging creativity: a psychometric view. Behavioural Brain Research, 214(2), 143–156.PubMedCrossRefGoogle Scholar
  4. Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95–113.PubMedCrossRefGoogle Scholar
  5. Bechtereva, N., Korotkov, A., Pakhomov, S., Roudas, M., Starchenko, M., & Medvedev, S. (2004). PET study of brain maintenance of verbal creative activity. International Journal of Psychophysiology, 53(1), 11–20.PubMedCrossRefGoogle Scholar
  6. Becker, B., Wagner, D., Koester, P., Tittgemeyer, M., Mercer-Chalmers-Bender, K., & Hurlemann, R. et al. (2015). Smaller amygdala and medial prefrontal cortex predict escalating stimulant use. Brain, awv113.Google Scholar
  7. Berkowitz, A. L., & Ansari, D. (2008). Generation of novel motor sequences: the neural correlates of musical improvisation. NeuroImage, 41(2), 535–543.PubMedCrossRefGoogle Scholar
  8. Blake, J. (1981). The only child in America: Prejudice versus performance. Population and Development Review, 43–54.Google Scholar
  9. Booth, J. R., Burman, D. D., Meyer, J. R., Gitelman, D. R., Parrish, T. B., & Mesulam, M. M. (2002). Functional anatomy of intra-and cross-modal lexical tasks. NeuroImage, 16(1), 7–22.PubMedCrossRefGoogle Scholar
  10. Burke, M. O. (1956). A search for systematic personality differentiae of the only child in young adulthood. The Journal of Genetic Psychology, 89(1), 71–84.PubMedCrossRefGoogle Scholar
  11. Cai, H., Kwan, V. S., & Sedikides, C. (2012). A sociocultural approach to narcissism: the case of modern China. European Journal of Personality, 26(5), 529–535.CrossRefGoogle Scholar
  12. Chávez-Eakle, R., Martindale, C., Locher, P., & Petrov, V. (2007). Creativity, DNA, and cerebral blood flow. Evolutionary and Neurocognitive Approaches to Aesthetics, Creativity, and the Arts, 209–224.Google Scholar
  13. Chen, C. H., Suckling, J., Lennox, B. R., Ooi, C., & Bullmore, E. T. (2011). A quantitative meta‐analysis of fMRI studies in bipolar disorder. Bipolar Disorders, 13(1), 1–15.PubMedCrossRefGoogle Scholar
  14. Costa, P. T., & McCrae, R. R. (1992). Neo PI-R professional manual. Odessa: Psychological assessment resources.Google Scholar
  15. Davies, G., Tenesa, A., Payton, A., Yang, J., Harris, S. E., Liewald, D., Ke, X., Le Hellard, S., Christoforou, A., & Luciano, M. (2011). Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Molecular Psychiatry, 16(10), 996–1005.PubMedPubMedCentralCrossRefGoogle Scholar
  16. DeYoung, C. G., Hirsh, J. B., Shane, M. S., Papademetris, X., Rajeevan, N., & Gray, J. R. et al. (2010). Testing predictions from personality neuroscience brain structure and the big five. Psychological Science.Google Scholar
  17. DeYoung, C. G., Weisberg, Y. J., Quilty, L. C., & Peterson, J. B. (2013). Unifying the aspects of the Big Five, the interpersonal circumplex, and trait affiliation. Journal of Personality, 81(5), 465–475.PubMedCrossRefGoogle Scholar
  18. Dietrich, A., & Kanso, R. (2010). A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychological Bulletin, 136(5), 822.PubMedCrossRefGoogle Scholar
  19. Duncan, J., Seitz, R. J., Kolodny, J., Bor, D., Herzog, H., Ahmed, A., Newell, F. N., & Emslie, H. (2000). A neural basis for general intelligence. Science, 289(5478), 457–460.PubMedCrossRefGoogle Scholar
  20. Dunn, J., & Slomkowski, C. (1992). Conflict and the development of social understanding.Google Scholar
  21. Falbo, T., & Polit, D. F. (1986). Quantitative review of the only child literature: research evidence and theory development. Psychological Bulletin, 100(2), 176.CrossRefGoogle Scholar
  22. Falbo, T., Poston, D. L., Ji, G., Jiao, S., Jing, Q., Wang, S., Gu, Q., Yin, H., & Liu, Y. (1989). Physical, achievement and personality characteristics of Chinese children. Journal of Biosocial Science, 21(04), 483–496.PubMedCrossRefGoogle Scholar
  23. Feng, X. (1992). Social characteristics of urban one-child families. Sociological Research, 1, 108–116.Google Scholar
  24. Fenton, N. (1928). The only child. The Pedagogical Seminary and Journal of Genetic Psychology, 35(4), 546–556.CrossRefGoogle Scholar
  25. Festini, F., & de Martino, M. (2004). Twenty five years of the one child family policy in China. Journal of Epidemiology and Community Health, 58(5), 358–360.PubMedPubMedCentralCrossRefGoogle Scholar
  26. Fincham, J. M., Carter, C. S., van Veen, V., Stenger, V. A., & Anderson, J. R. (2002). Neural mechanisms of planning: a computational analysis using event-related fMRI. Proceedings of the National Academy of Sciences, 99(5), 3346–3351.CrossRefGoogle Scholar
  27. Fink, A., Grabner, R. H., Gebauer, D., Reishofer, G., Koschutnig, K., & Ebner, F. (2010). Enhancing creativity by means of cognitive stimulation: evidence from an fMRI study. NeuroImage, 52(4), 1687–1695.PubMedCrossRefGoogle Scholar
  28. Fletcher, C. (2014). Adult reflections on being an ‘only-child’.Google Scholar
  29. Fossati, P., Hevenor, S. J., Graham, S. J., Grady, C., Keightley, M. L., & Craik, F et al. (2014). In search of the emotional self: an fMRI study using positive and negative emotional words. American Journal of Psychiatry.Google Scholar
  30. Gaynor, J. L., & Runco, M. A. (1992). Family size, birth‐order, age‐interval, and the creativity of children. The Journal of Creative Behavior, 26(2), 108–118.CrossRefGoogle Scholar
  31. Gradin, V. B., Kumar, P., Waiter, G., Ahearn, T., Stickle, C., & Milders, M. et al. (2011). Expected value and prediction error abnormalities in depression and schizophrenia. Brain, awr059.Google Scholar
  32. Gray, J. R., Chabris, C. F., & Braver, T. S. (2003). Neural mechanisms of general fluid intelligence. Nature Neuroscience, 6(3), 316–322.PubMedCrossRefGoogle Scholar
  33. Graziano, W. G., Habashi, M. M., Sheese, B. E., & Tobin, R. M. (2007). Agreeableness, empathy, and helping: a person × situation perspective. Journal of Personality and Social Psychology, 93(4), 583.PubMedCrossRefGoogle Scholar
  34. Guo, W., Liu, F., Dai, Y., Jiang, M., Zhang, J., Yu, L., Long, L., Chen, H., Gao, Q., & Xiao, C. (2013). Decreased interhemispheric resting-state functional connectivity in first-episode, drug-naive major depressive disorder. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 41, 24–29.PubMedCrossRefGoogle Scholar
  35. Gusnard, D. A., Akbudak, E., Shulman, G. L., & Raichle, M. E. (2001). Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proceedings of the National Academy of Sciences, 98(7), 4259–4264.CrossRefGoogle Scholar
  36. Haier, R. J., Jung, R. E., Yeo, R. A., Head, K., & Alkire, M. T. (2004). Structural brain variation and general intelligence. NeuroImage, 23(1), 425–433.PubMedCrossRefGoogle Scholar
  37. Hamner, M. B., Lorberbaum, J. P., & George, M. S. (1999). Potential role of the anterior cingulate cortex in PTSD: review and hypothesis. Depression and Anxiety, 9(1), 1–14.PubMedCrossRefGoogle Scholar
  38. Hao, Y., & Feng, X. (2002). The influence of parent–child reIation on the growth of onIy chiId. Journal of Huazhong University of Science and Technology (The Humanities and Social Science Edition), 16(6), 109–112.Google Scholar
  39. Huang, P., Qiu, L., Shen, L., Zhang, Y., Song, Z., Qi, Z., Gong, Q., & Xie, P. (2013). Evidence for a left‐over‐right inhibitory mechanism during figural creative thinking in healthy nonartists. Human Brain Mapping, 34(10), 2724–2732.PubMedCrossRefGoogle Scholar
  40. Hui, K. K., Marina, O., Liu, J., Rosen, B. R., & Kwong, K. K. (2010). Acupuncture, the limbic system, and the anticorrelated networks of the brain. Autonomic Neuroscience, 157(1), 81–90.PubMedPubMedCentralCrossRefGoogle Scholar
  41. Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences, 105(19), 6829–6833.CrossRefGoogle Scholar
  42. Jiao, S., Ji, G., & Jing, Q. (1996). Cognitive development of Chinese urban only children and children with siblings. Child Development, 67(2), 387–395.CrossRefGoogle Scholar
  43. Kiehl, K. A. (2006). A cognitive neuroscience perspective on psychopathy: evidence for paralimbic system dysfunction. Psychiatry Research, 142(2), 107–128.PubMedPubMedCentralCrossRefGoogle Scholar
  44. Kilpatrick, L., & Cahill, L. (2003). Amygdala modulation of parahippocampal and frontal regions during emotionally influenced memory storage. NeuroImage, 20(4), 2091–2099.PubMedCrossRefGoogle Scholar
  45. Kim, K. H., Cramond, B., & Bandalos, D. L. (2006). The latent structure and measurement invariance of scores on the Torrance Tests of Creative Thinking–Figural. Educational and Psychological Measurement, 66(3), 459–477.CrossRefGoogle Scholar
  46. Kleibeuker, S. W., Koolschijn, P. C. M., Jolles, D. D., De Dreu, C. K., & Crone, E. A. (2013). The neural coding of creative idea generation across adolescence and early adulthood. Frontiers in Human Neuroscience, 7.Google Scholar
  47. Knauff, M., Kassubek, J., Mulack, T., & Greenlee, M. W. (2000). Cortical activation evoked by visual mental imagery as measured by fMRI. Neuroreport, 11(18), 3957–3962.PubMedCrossRefGoogle Scholar
  48. Leung, M.-K., Chan, C. C., Yin, J., Lee, C.-F., So, K.-F., & Lee, T. M. et al. (2012). Increased gray matter volume in the right angular and posterior parahippocampal gyri in loving-kindness meditators. Social Cognitive and Affective Neuroscience, nss076.Google Scholar
  49. Li, S., Chen, R., Cao, Y., Li, J., Zuo, D., & Yan, H. (2013). Sexual knowledge, attitudes and practices of female undergraduate students in Wuhan, China: The only-child versus students with siblings. PloS One, 8(9), e73797.PubMedPubMedCentralCrossRefGoogle Scholar
  50. Li, W., Li, X., Huang, L., Kong, X., Yang, W., & Wei, D. et al. Qiu, J. (2014). Brain structure links trait creativity to openness to experience. Social Cognitive and Affective Neuroscience, nsu041.Google Scholar
  51. Maldjian, J. A., Laurienti, P. J., Kraft, R. A., & Burdette, J. H. (2003). An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. NeuroImage, 19(3), 1233–1239.PubMedCrossRefGoogle Scholar
  52. McCrae, R. R. (2011). Personality theories for the 21st century. Teaching of Psychology, 38(3), 209–214.CrossRefGoogle Scholar
  53. Ming, W. D. Q. (1989). Revision on the combined Raven’s test for the Rural in China [J]. Psychological Science 5(004).Google Scholar
  54. Nettle, D., & Liddle, B. (2008). Agreeableness is related to social-cognitive, but not social-perceptual, theory of mind. European Journal of Personality, 22(4), 323.CrossRefGoogle Scholar
  55. Paulus, M. P., Hozack, N., Frank, L., & Brown, G. G. (2002). Error rate and outcome predictability affect neural activation in prefrontal cortex and anterior cingulate during decision-making. NeuroImage, 15(4), 836–846.PubMedCrossRefGoogle Scholar
  56. Phan, K. L., Taylor, S. F., Welsh, R. C., Ho, S.-H., Britton, J. C., & Liberzon, I. (2004). Neural correlates of individual ratings of emotional salience: a trial-related fMRI study. NeuroImage, 21(2), 768–780.PubMedCrossRefGoogle Scholar
  57. Piefke, M., Weiss, P. H., Markowitsch, H. J., & Fink, G. R. (2005). Gender differences in the functional neuroanatomy of emotional episodic autobiographical memory. Human Brain Mapping, 24(4), 313–324.PubMedCrossRefGoogle Scholar
  58. Polit, D. F. (1982). Effects of family size: a critical review of literature since 1973. Final report.Google Scholar
  59. Polit, D. F., & Falbo, T. (1987). Only children and personality development: a quantitative review. Journal of Marriage and the Family, 309–325.Google Scholar
  60. Ridgway, G. R., Omar, R., Ourselin, S., Hill, D. L., Warren, J. D., & Fox, N. C. (2009). Issues with threshold masking in voxel-based morphometry of atrophied brains. NeuroImage, 44(1), 99–111.PubMedCrossRefGoogle Scholar
  61. Sampaio, A., Soares, J. M., Coutinho, J., Sousa, N., & Gonçalves, Ó. F. (2014). The Big Five default brain: functional evidence. Brain Structure and Function, 219(6), 1913–1922.PubMedCrossRefGoogle Scholar
  62. Sawyer, K. (2011). The cognitive neuroscience of creativity: a critical review. Creativity Research Journal, 23(2), 137–154.CrossRefGoogle Scholar
  63. Saxe, R., & Powell, L. J. (2006). It’s the thought that counts specific brain regions for one component of theory of mind. Psychological Science, 17(8), 692–699.PubMedCrossRefGoogle Scholar
  64. Shalley, C. E., Gilson, L. L., & Blum, T. C. (2009). Interactive effects of growth need strength, work context, and job complexity on self-reported creative performance. Academy of Management Journal, 52(3), 489–505.CrossRefGoogle Scholar
  65. Silvia, P. J., Winterstein, B. P., Willse, J. T., Barona, C. M., Cram, J. T., Hess, K. I., & Richard, C. A. (2008). Assessing creativity with divergent thinking tasks: exploring the reliability and validity of new subjective scoring methods. Psychology of Aesthetics, Creativity, and the Arts, 2(2), 68.CrossRefGoogle Scholar
  66. Sohn, M.-H., Ursu, S., Anderson, J. R., Stenger, V. A., & Carter, C. S. (2000). The role of prefrontal cortex and posterior parietal cortex in task switching. Proceedings of the National Academy of Sciences, 97(24), 13448–13453.CrossRefGoogle Scholar
  67. Takeuchi, H., Taki, Y., Hashizume, H., Sassa, Y., Nagase, T., Nouchi, R., & Kawashima, R. (2011). Cerebral blood flow during rest associates with general intelligence and creativity. [Research Support, Non-U.S. Gov’t. PLoS One, 6(9), e25532. doi:10.1371/journal.pone.0025532.PubMedPubMedCentralCrossRefGoogle Scholar
  68. Takeuchi, H., Taki, Y., Sassa, Y., Hashizume, H., Sekiguchi, A., Nagase, T., Nouchi, R., & Kawashima, R. (2012). Regional gray and white matter volume associated with Stroop interference: evidence from voxel-based morphometry. [Research Support, Non-U.S. Gov’t]. NeuroImage, 59(3), 2899–2907. doi:10.1016/j.neuroimage.2011.09.064.PubMedCrossRefGoogle Scholar
  69. Takeuchi, H., Taki, Y., Nouchi, R., Sekiguchi, A., Kotozaki, Y., Miyauchi, C. M., Yokoyama, R., Iizuka, K., Hashizume, H., Nakagawa, S., Kunitoki, K., Sassa, Y., & Kawashima, R. (2014). Regional gray matter density is associated with achievement motivation: evidence from voxel-based morphometry. [Research Support, Non-U.S. Gov’t]. Brain Structure and Function, 219(1), 71–83. doi:10.1007/s00429-012-0485-3.PubMedCrossRefGoogle Scholar
  70. Tang, C., Li, A., Huang, H., Cheng, X., Gao, Y., Chen, H., Li, P., Cheng, X.-M., & Zuo, Q. (2012). Effects of lead pollution in SY River on children’s intelligence. Life Science Journal, 9(3), 458–464.Google Scholar
  71. Tierney, P., & Farmer, S. M. (2002). Creative self-efficacy: its potential antecedents and relationship to creative performance. Academy of Management Journal, 45(6), 1137–1148.CrossRefGoogle Scholar
  72. Torrance, E. P. (1987). Teaching for creativity. Frontiers of Creativity Research: Beyond the Basics, 189, 215.Google Scholar
  73. Wang, N. (1984). The socialization of the only child in China. Paper presented at the Conference on Child Socialization and Mental Health. Honolulu: East–west Center.Google Scholar
  74. Wei, D., Du, X., Li, W., Chen, Q., Li, H., & Hao, X et al. (2014). Regional gray matter volume and anxiety-related traits interact to predict somatic complaints in a non-clinical sample. Social Cognitive and Affective Neuroscience, nsu033.Google Scholar
  75. Wei, D., Yang, J., Li, W., Wang, K., Zhang, Q., & Qiu, J. (2014b). Increased resting functional connectivity of the medial prefrontal cortex in creativity by means of cognitive stimulation. Cortex, 51, 92–102.PubMedCrossRefGoogle Scholar
  76. Worsley, K. J., Marrett, S., Neelin, P., Vandal, A. C., Friston, K. J., & Evans, A. C. (1996). A unified statistical approach for determining significant signals in images of cerebral activation. Human Brain Mapping, 4(1), 58–73.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Junyi Yang
    • 1
    • 2
    • 3
  • Xin Hou
    • 1
    • 2
    • 3
  • Dongtao Wei
    • 1
    • 2
    • 3
  • Kangcheng Wang
    • 1
    • 2
    • 3
  • Yadan Li
    • 1
    • 2
    • 3
  • Jiang Qiu
    • 1
    • 2
    • 3
  1. 1.Key Laboratory of Cognition and Personality (SWU), Ministry of EducationChongqingChina
  2. 2.Department of Psychology, Southwest UniversityChongqingChina
  3. 3.Southwest University Branch, Collaborative Innovation Center of Assessment toward Basic Education QualityBeijing Normal UniversityBeijingChina

Personalised recommendations