Brain Imaging and Behavior

, Volume 11, Issue 1, pp 194–204 | Cite as

APOE ε4 associated with preserved executive function performance and maintenance of temporal and cingulate brain volumes in younger adults

  • Warren D. Taylor
  • Brian Boyd
  • Rachel Turner
  • Douglas R. McQuoid
  • Allison Ashley-Koch
  • James R. MacFall
  • Ayman Saleh
  • Guy G. Potter
Original Research

Abstract

The APOE ε4 allele is associated with cognitive deficits and brain atrophy in older adults, but studies in younger adults are mixed. We examined APOE genotype effects on cognition and brain structure in younger adults and whether genotype effects differed by age and with presence of depression. 157 adults (32 % ε4 carriers, 46 % depressed) between 20 and 50 years of age completed neuropsychological testing, 131 of which also completed 3 T cranial MRI. We did not observe a direct effect of APOE genotype on cognitive performance or structural MRI measures. A significant genotype by age interaction was observed for executive function, where age had less of an effect on executive function in ε4 carriers. Similar interactions were observed for the entorhinal cortex, rostral and caudal anterior cingulate cortex and parahippocampal gyrus, where the effect of age on regional volumes was reduced in ε4 carriers. There were no significant interactions between APOE genotype and depression diagnosis. The ε4 allele benefits younger adults by allowing them to maintain executive function performance and volumes of cingulate and temporal cortex regions with aging, at least through age fifty years.

Keywords

Aging Depression Cognition MRI Apoe 

Notes

Acknowledgments

This project was supported by National Institute of Mental Health (NIMH) grant R01 MH077745. It was further supported by CTSA award UL1TR000445 from the National Center for Advancing Translational Sciences (NCATS) and conducted in part using the resources of the Advanced Computing Center for Research and Education at Vanderbilt University, Nashville, TN.

Compliance with ethical standards

Disclosures

All authors (including Dr. Taylor, Mr. Boyd, Ms. Turner, Mr. McQuoid, Dr. Ashley-Koch, Dr. MacFall, Dr. Saleh, and Dr. Potter) declare they have no conflict of interest.

Informed consent statement

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all patients for being included in the study.

Supplementary material

11682_2016_9522_MOESM1_ESM.docx (91 kb)
Supplemental Table 1 (DOCX 90 kb)

References

  1. Alexander, D. M., Williams, L. M., Gatt, J. M., Dobson-Stone, C., Kuan, S. A., Todd, E. G., et al. (2007). The contribution of apolipoprotein E alleles on cognitive performance and dynamic neural activity over six decades. Biological Psychology, 75(3), 229–238.CrossRefPubMedGoogle Scholar
  2. Alexander, G. E., Bergfield, K. L., Chen, K., Reiman, E. M., Hanson, K. D., Lin, L., et al. (2012). Gray matter network associated with risk for alzheimer’s disease in young to middle-aged adults. Neurobiology of Aging, 33(12), 2723–2732.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bunce, D., Anstey, K. J., Burns, R., Christensen, H., & Easteal, S. (2011). Does possession of apolipoprotein E varepsilon4 benefit cognitive function in healthy young adults? Neuropsychologia, 49(7), 1693–1697.CrossRefPubMedGoogle Scholar
  4. Byers, A. L., Covinsky, K. E., Barnes, D. E., & Yaffe, K. (2012). Dysthymia and depression increase risk of dementia and mortality among older veterans. The American Journal of Geriatric Psychiatry, 20(8), 664–672.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Caselli, R. J., Reiman, E. M., Osborne, D., Hentz, J. G., Baxter, L. C., Hernandez, J. L., & Alexander, G. G. (2004). Longitudinal changes in cognition and behavior in asymptomatic carriers of the APOE e4 allele. Neurology, 62(11), 1990–1995.CrossRefPubMedGoogle Scholar
  6. Corder, E. H., Saunders, A. M., Strittmatter, W. J., Schmechel, D. E., Gaskell, P. C., Small, G. W., et al. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of alzheimer’s disease in late onset families. Science, 261(5123), 921–923.CrossRefPubMedGoogle Scholar
  7. Corsentino, E. A., Sawyer, K., Sachs-Ericsson, N., & Blazer, D. G. (2009). Depressive symptoms moderate the influence of the apolipoproteine epsilon4 allele on cognitive decline in a sample of community dwelling older adults. The American Journal of Geriatric Psychiatry, 17(2), 155–165.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Crary, J. F., Trojanowski, J. Q., Schneider, J. A., Abisambra, J. F., Abner, E. L., Alafuzoff, I., et al. (2014). Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathologica, 128(6), 755–766.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage, 9(2), 179–194.CrossRefPubMedGoogle Scholar
  10. Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., et al. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31(3), 968–980.CrossRefPubMedGoogle Scholar
  11. DiBattista, A. M., Stevens, B. W., Rebeck, G. W., & Green, A. E. (2014). Two alzheimer’s disease risk genes increase entorhinal cortex volume in young adults. Frontiers in Human Neuroscience, 8, 779.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Diniz, B.S., Butters, M.A., Albert, S.M., Dew, M.A., Reynolds, C.F.,3rd. (2013). Late-life depression and risk of vascular dementia and alzheimer’s disease: systematic review and meta-analysis of community-based cohort studies. The British Journal of Psychiatry, 202(5), 329–335.Google Scholar
  13. Donix, M., Burggren, A. C., Suthana, N. A., Siddarth, P., Ekstrom, A. D., Krupa, A. K., et al. (2010). Longitudinal changes in medial temporal cortical thickness in normal subjects with the APOE-4 polymorphism. NeuroImage, 53(1), 37–43.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dowell, N. G., Ruest, T., Evans, S. L., King, S. L., Tabet, N., Tofts, P. S., & Rusted, J. M. (2013). MRI of carriers of the apolipoprotein E e4 allele-evidence for structural differences in normal-appearing brain tissue in e4+ relative to e4- young adults. NMR in Biomedicine, 26(6), 674–682.PubMedGoogle Scholar
  15. Evans, S., Dowell, N. G., Tabet, N., Tofts, P. S., King, S. L., & Rusted, J. M. (2014). Cognitive and neural signatures of the APOE E4 allele in mid-aged adults. Neurobiology of Aging, 35(7), 1615–1623.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fennema-Notestine, C., Panizzon, M. S., Thompson, W. R., Chen, C. H., Eyler, L. T., Fischl, B., et al. (2011). Presence of ApoE epsilon4 allele associated with thinner frontal cortex in middle age. Journal of Alzheimer's Disease, 26(Suppl 3), 49–60.PubMedPubMedCentralGoogle Scholar
  17. Filippini, N., Ebmeier, K. P., MacIntosh, B. J., Trachtenberg, A. J., Frisoni, G. B., Wilcock, G. K., et al. (2011). Differential effects of the APOE genotype on brain function across the lifespan. NeuroImage, 54(1), 602–610.CrossRefPubMedGoogle Scholar
  18. First, M. B., Gibbon, M., Spitzer, R. L., Williams, J. B., & Benjamin, L. S. (1997). Structured clinical interview for DSM-IV axis II personality disorders (SCID-II). Washington, D.C.: American Psychiatric Press, Inc..Google Scholar
  19. Fischl, B., & Dale, A. M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences of the United States of America, 97, 11050–11055.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., et al. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341–355.Google Scholar
  21. Fischl, B., Salat, D. H., van der Kouwe, A. J., Makris, N., Segonne, F., Quinn, B. T., & Dale, A. M. (2004a). Sequence-independent segmentation of magnetic resonance images. NeuroImage, 23(Suppl 1), S69–S84.CrossRefPubMedGoogle Scholar
  22. Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segonne, F., Salat, D. H., et al. (2004b). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14(1), 11–22.CrossRefPubMedGoogle Scholar
  23. Han, S. D., & Bondi, M. W. (2008). Revision of the apolipoprotein E compensatory mechanism recruitment hypothesis. Alzheimer’s & Dementia: the Journal of the Alzheimer’s Association, 4(4), 251–254.CrossRefGoogle Scholar
  24. Honea, R. A., Vidoni, E., Harsha, A., & Burns, J. M. (2009). Impact of APOE on the healthy aging brain: a voxel-based MRI and DTI study. Journal of Alzheimer's Disease, 18(3), 553–564.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Hostage, C. A., Choudhury, K. R., Murali Doraiswamy, P., Petrella, J. R., & Alzheimer’s Disease Neuroimaging, I. (2014). Mapping the effect of the apolipoprotein E genotype on 4-year atrophy rates in an Alzheimer disease-related brain network. Radiology, 271(1), 211–219.CrossRefPubMedGoogle Scholar
  26. Ihle, A., Bunce, D., & Kliegel, M. (2012). APOE epsilon4 and cognitive function in early life: a meta-analysis. Neuropsychology, 26(3), 267–277.CrossRefPubMedGoogle Scholar
  27. Jack Jr., C. R., Knopman, D. S., Jagust, W. J., Petersen, R. C., Weiner, M. W., Aisen, P. S., et al. (2013). Tracking pathophysiological processes in alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. Lancet Neurology, 12(2), 207–216.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Jack Jr., C. R., Wiste, H. J., Weigand, S. D., Knopman, D. S., Vemuri, P., Mielke, M. M., et al. (2015). Age, sex, and APOE epsilon4 effects on memory, brain structure, and beta-amyloid across the adult life span. JAMA Neurology, 72(5), 511–519.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Jagust, W. (2013). Vulnerable neural systems and the borderland of brain aging and neurodegeneration. Neuron, 77(2), 219–234.CrossRefPubMedPubMedCentralGoogle Scholar
  30. Jorm, A. F., Mather, K. A., Butterworth, P., Anstey, K. J., Christensen, H., & Easteal, S. (2007). APOE genotype and cognitive functioning in a large age-stratified population sample. Neuropsychology, 21(1), 1–8.CrossRefPubMedGoogle Scholar
  31. Karlsson, I. K., Bennet, A. M., Ploner, A., Andersson, T. M., Reynolds, C. A., Gatz, M., & Pedersen, N. L. (2015). Apolipoprotein E epsilon4 genotype and the temporal relationship between depression and dementia. Neurobiology of Aging, 36(4), 1751–1756.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kempton, M. J., Salvador, Z., Munafo, M. R., Geddes, J. R., Simmons, A., Frangou, S., & Williams, S. C. (2011). Structural neuroimaging studies in major depressive disorder: meta-analysis and comparison with bipolar disorder. Archives of General Psychiatry, 68(7), 675–690.CrossRefPubMedGoogle Scholar
  33. Kim, D. H., Payne, M. E., Levy, R. M., MacFall, J. R., & Steffens, D. C. (2002). APOE genotype and hippocampal volume change in geriatric depression. Biological Psychiatry, 51, 426–429.CrossRefPubMedGoogle Scholar
  34. Lavretsky, H., Ercoli, L., Siddarth, P., Bookheimer, S., Miller, K., & Small, G. (2003). Apolipoprotein epsilon4 allele status, depressive symptoms, and cognitive decline in middle-aged and elderly persons without dementia. The American Journal of Geriatric Psychiatry, 11(6), 667–673.PubMedPubMedCentralGoogle Scholar
  35. Lind, J., Larsson, A., Persson, J., Ingvar, M., Nilsson, L. G., Backman, L., et al. (2006). Reduced hippocampal volume in non-demented carriers of the apolipoprotein E epsilon4: relation to chronological age and recognition memory. Neuroscience Letters, 396(1), 23–27.CrossRefPubMedGoogle Scholar
  36. Mahley, R. W., & Huang, Y. (2012). Apolipoprotein e sets the stage: response to injury triggers neuropathology. Neuron, 76(5), 871–885.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Marchant, N. L., King, S. L., Tabet, N., & Rusted, J. M. (2010). Positive effects of cholinergic stimulation favor young APOE epsilon4 carriers. Neuropsychopharmacology, 35(5), 1090–1096.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Matura, S., Prvulovic, D., Jurcoane, A., Hartmann, D., Miller, J., Scheibe, M., et al. (2014). Differential effects of the ApoE4 genotype on brain structure and function. NeuroImage, 89, 81–91.CrossRefPubMedGoogle Scholar
  39. McClintock, S. M., Husain, M. M., Greer, T. L., & Cullum, C. M. (2010). Association between depression severity and neurocognitive function in major depressive disorder: a review and synthesis. Neuropsychology, 24(1), 9–34.CrossRefPubMedGoogle Scholar
  40. Mondadori, C. R., de Quervain, D. J., Buchmann, A., Mustovic, H., Wollmer, M. A., Schmidt, C. F., et al. (2007). Better memory and neural efficiency in young apolipoprotein E epsilon4 carriers. Cerebral Cortex, 17(8), 1934–1947.CrossRefPubMedGoogle Scholar
  41. Montgomery, S. A., & Asberg, M. (1979). A new depression scale designed to be sensitive to change. The British Journal of Psychiatry, 134, 382–389.CrossRefPubMedGoogle Scholar
  42. Nathan, B. P., Bellosta, S., Sanan, D. A., Weisgraber, K. H., Mahley, R. W., & Pitas, R. E. (1994). Differential effects of apolipoproteins E3 and E4 on neuronal growth in vitro. Science, 264(5160), 850–852.CrossRefPubMedGoogle Scholar
  43. Niti, M., Yap, K. B., Kua, E. H., & Ng, T. P. (2009). APOE-epsilon4, depressive symptoms, and cognitive decline in Chinese older adults: Singapore longitudinal aging studies. The Journals of Gerontology Series A, Biological Sciences and Medical Sciences, 64(2), 306–311.CrossRefPubMedGoogle Scholar
  44. O’Dwyer, L., Lamberton, F., Matura, S., Tanner, C., Scheibe, M., Miller, J., et al. (2012). Reduced hippocampal volume in healthy young ApoE4 carriers: an MRI study. PloS One, 7(11), e48895.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Pizzagalli, D. A. (2011). Frontocingulate dysfunction in depression: toward biomarkers of treatment response. Neuropsychopharmacology, 36, 183–206.CrossRefPubMedGoogle Scholar
  46. Protas, H. D., Chen, K., Langbaum, J. B., Fleisher, A. S., Alexander, G. E., Lee, W., et al. (2013). Posterior cingulate glucose metabolism, hippocampal glucose metabolism, and hippocampal volume in cognitively normal, late-middle-aged persons at 3 levels of genetic risk for Alzheimer disease. JAMA Neurology, 70(3), 320–325.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Qiu, A., Taylor, W. D., Zhao, Z., MacFall, J. R., Miller, M. I., Key, C. R., et al. (2009). APOE related hippocampal shape alteration in geriatric depression. NeuroImage, 44, 620–626.CrossRefPubMedGoogle Scholar
  48. Rajan, K. B., Wilson, R. S., Skarupski, K. A., Mendes de Leon, C. F., & Evans, D. A. (2014). Gene-behavior interaction of depressive symptoms and the apolipoprotein E {varepsilon}4 allele on cognitive decline. Psychosomatic Medicine, 76(2), 101–108.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Reinvang, I., Espeseth, T., & Westlye, L. T. (2013). APOE-related biomarker profiles in non-pathological aging and early phases of alzheimer’s disease. Neuroscience and Biobehavioral Reviews, 37(8), 1322–1335.CrossRefPubMedGoogle Scholar
  50. Richter-Schmidinger, T., Alexopoulos, P., Horn, M., Maus, S., Reichel, M., Rhein, C., et al. (2011). Influence of brain-derived neurotrophic-factor and apolipoprotein E genetic variants on hippocampal volume and memory performance in healthy young adults. Journal of Neural Transmission, 118(2), 249–257.CrossRefPubMedGoogle Scholar
  51. Risacher, S. L., & Saykin, A. J. (2013). Neuroimaging and other biomarkers for alzheimer’s disease: the changing landscape of early detection. Annual Review of Clinical Psychology, 9, 621–648.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Risacher, S. L., Shen, L., West, J. D., Kim, S., McDonald, B. C., Beckett, L. A., et al. (2010). Longitudinal MRI atrophy biomarkers: relationship to conversion in the ADNI cohort. Neurobiology of Aging, 31(8), 1401–1418.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Rusted, J. M., Evans, S. L., King, S. L., Dowell, N., Tabet, N., & Tofts, P. S. (2013). APOE e4 polymorphism in young adults is associated with improved attention and indexed by distinct neural signatures. NeuroImage, 65, 364–373.CrossRefPubMedGoogle Scholar
  54. Schultz, M. R., Lyons, M. J., Franz, C. E., Grant, M. D., Boake, C., Jacobson, K. C., et al. (2008). Apolipoprotein E genotype and memory in the sixth decade of life. Neurology, 70(19 Pt 2), 1771–1777.CrossRefPubMedPubMedCentralGoogle Scholar
  55. Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., et al. (1998). The Mini-International Neuropsychiatric Inventory (M.I.N.I.): the development and validation of a structured diagnostic interview for DSM-IV and ICD-10. The Journal of Clinical Psychiatry, Suppl 20, 22–33.Google Scholar
  56. Sheline, Y. I., Pieper, C. F., Barch, D. M., Welsh-Boehmer, K., McKinstry, R. C., MacFall, J. R., et al. (2010). Support for the vascular depression hypothesis in late-life depression: results of a 2-site, prospective, antidepressant treatment trial. Archives of General Psychiatry, 67(3), 277–285.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Skoog, I., Waern, M., Duberstein, P., Blennow, K., Zetterberg, H., Borjesson-Hanson, A., et al. (2015). A 9-year prospective population-based study on the association between the APOE*E4 allele and late-life depression in Sweden. Biological Psychiatry, 78(10), 730–736.CrossRefPubMedGoogle Scholar
  58. Steffens, D. C., Norton, M. C., Hart, A. D., Skoog, I., Corcoran, C., & Breitner, J. C. (2003). Apolipoprotein E genotype and major depression in a community of older adults. The cache county study. Psychological Medicine, 33, 541–547.CrossRefPubMedGoogle Scholar
  59. Strittmatter, W. J., Saunders, A. M., Schmechel, D., Pericak-Vance, M., Enghild, J., Salvesen, G. S., & Roses, A. D. (1993). Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 90, 1977–1981.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Suri, S., Heise, V., Trachtenberg, A. J., & Mackay, C. E. (2013). The forgotten APOE allele: a review of the evidence and suggested mechanisms for the protective effect of APOE varepsilon2. Neuroscience and Biobehavioral Reviews, 37(10 Pt 2), 2878–2886.CrossRefPubMedGoogle Scholar
  61. Taylor, J. L., Scanlon, B. K., Farrell, M., Hernandez, B., Adamson, M. M., Ashford, J. W., et al. (2014). APOE-epsilon4 and aging of medial temporal lobe gray matter in healthy adults older than 50 years. Neurobiology of Aging, 35(11), 2479–2485.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Wishart, H. A., Saykin, A. J., McAllister, T. W., Rabin, L. A., McDonald, B. C., Flashman, L. A., et al. (2006). Regional brain atrophy in cognitively intact adults with a single APOE epsilon4 allele. Neurology, 67(7), 1221–1224.CrossRefPubMedGoogle Scholar
  63. Yu, Y. W., Lin, C. H., Chen, S. P., Hong, C. J., & Tsai, S. J. (2000). Intelligence and event-related potentials for young female human volunteer apolipoprotein E epsilon4 and non-epsilon4 carriers. Neuroscience Letters, 294(3), 179–181.CrossRefPubMedGoogle Scholar
  64. Yuan, Y., Zhang, Z., Bai, F., You, J., Yu, H., Shi, Y., & Liu, W. (2010). Genetic variation in apolipoprotein E alters regional gray matter volumes in remitted late-onset depression. Journal of Affective Disorders, 121(3), 273–277.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Warren D. Taylor
    • 1
    • 2
  • Brian Boyd
    • 2
  • Rachel Turner
    • 2
  • Douglas R. McQuoid
    • 3
  • Allison Ashley-Koch
    • 4
  • James R. MacFall
    • 5
  • Ayman Saleh
    • 1
  • Guy G. Potter
    • 3
  1. 1.The Geriatric Research, Education, and Clinical Center (GRECC), Department of Veterans Affairs Medical CenterTennessee Valley Healthcare SystemNashvilleUSA
  2. 2.The Center for Cognitive Medicine, Department of PsychiatryVanderbilt University Medical CenterNashvilleUSA
  3. 3.Department of Psychiatry and Behavioral SciencesDuke University Medical CenterDurhamUSA
  4. 4.Center for Human Disease Modeling and Department of MedicineDuke University Medical CenterDurhamUSA
  5. 5.Department of RadiologyDuke University Medical CenterDurhamUSA

Personalised recommendations