Brain Imaging and Behavior

, Volume 11, Issue 1, pp 240–252 | Cite as

Pathophysiology of the behavioral variant of frontotemporal lobar degeneration: A study combining MRI and FDG-PET

  • M-S. Buhour
  • F. Doidy
  • M. Laisney
  • A. L. Pitel
  • V. de La Sayette
  • F. Viader
  • F. Eustache
  • B. Desgranges
Original Research

Abstract

Gray matter (GM) lobar atrophy and glucose hypometabolism are well-described hallmarks of frontotemporal lobar degeneration (FTLD), but the relationships between them are still poorly understood. In this study, we aimed to show the patterns of GM atrophy and hypometabolism in a sample of 15 patients with the behavioral variant of FTLD (bv-FTD), compared to 15 healthy controls, then to provide a direct comparison between GM atrophy and hypometabolism, using a voxel-based method specially designed to statistically compare the two imaging modalities. The participants underwent structural magnetic resonance imaging and 18F-fluorodeoxyglucose (FDG) positron emission tomography examinations. First, between-group comparisons of GM volume and metabolism were performed. Then, in the patient group, correlations between regional alterations and direct between-modality voxelwise comparison were performed. Finally, we examined individual patterns of brain abnormalities for each imaging modality and each patient. The observed patterns of GM atrophy and hypometabolism were consistent with previous studies. We found significant voxelwise correlations between changes in GM and FDG uptake, mainly in the frontal cortex, corresponding to the typical profile of alterations in bv-FTD. The direct comparison revealed regional variability in the relationship between hypometabolism and atrophy. This analysis revealed greater atrophy than hypometabolism in the right putamen and amygdala, and left insula and superior temporal gyrus, whereas hypometabolism was more severe than GM atrophy in the left caudate nucleus and anterior cingulate cortex. Finally, GM atrophy affected the right amygdala/hippocampus and left insula in 95 % of the patients. These findings provide evidence for regional variations in the hierarchy of hypometabolism and GM atrophy and the relationships between them, and enhance our understanding of the pathophysiology of bv-FTD.

Keywords

bv-FTD Structural MRI, FDG-PET Voxel-based morphometry Individual analysis 

Notes

Compliance with ethical standards

Conflict of Interests

Author Marie-Sonia BUHOUR declares that she has no conflict of interest. Author Franck Doidy declares he has no conflict of interest. Author Mickaël Laisney declares he has no conflict of interest. Author Anne-Lise Pitel declares she has no conflict of interest. Author Vincent de la Sayette declares he has no conflict of interest. Author Fausto Viader declares he has no conflict of interest. Author Francis Eustache declares he has no conflict of interest. Author Béatrice Desgranges declares she has no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

References

  1. Bathgate, D., Snowden, J. S., Varma, A., Blackshaw, A., & Neary, D. (2001). Behaviour in Frontotemporal dementia, Alzheimer’s disease and vascular dementia. Acta Neurologica Scandinavica, 103(6), 367–378 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11421849.
  2. Bertoux, M., de Souza, L. C., Corlier, F., Lamari, F., Bottlaender, M., Dubois, B., & Sarazin, M. (2014). Two distinct amnesic profiles in behavioral variant frontotemporal dementia. Biological Psychiatry, 75(7), 582–588. doi: 10.1016/j.biopsych.2013.08.017.CrossRefPubMedGoogle Scholar
  3. Boccardi, M., Laakso, M. P., Bresciani, L., Galluzzi, S., Geroldi, C., Beltramello, A., … Frisoni, G. B. (2003). The MRI pattern of frontal and temporal brain atrophy in fronto-temporal dementia. Neurobiology of Aging, 24(1), 95–103. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12493555.
  4. Boccardi, M., Sabattoli, F., Laakso, M. P., Testa, C., Rossi, R., Beltramello, A., … Frisoni, G. B. (2005). Frontotemporal dementia as a neural system disease. Neurobiology of Aging, 26(1), 37–44. doi: 10.1016/j.neurobiolaging.2004.02.019.
  5. Bozeat, S., Gregory, C. A., Ralph, M. A., & Hodges, J. R. (2000). Which neuropsychiatric and behavioural features distinguish frontal and temporal variants of frontotemporal dementia from Alzheimer’s disease? Journal of Neurology, Neurosurgery, and Psychiatry, 69(2), 178–186. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10896690
  6. Broe, M., Hodges, J. R., Schofield, E., Shepherd, C. E., Kril, J. J., & Halliday, G. M. (2003). Staging disease severity in pathologically confirmed cases of frontotemporal dementia. Neurology, 60(6), 1005–1011 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12654969.CrossRefPubMedGoogle Scholar
  7. Casanova, R., Srikanth, R., Baer, A., Laurienti, P. J., Burdette, J. H., Hayasaka, S., … Maldjian, J. A. (2007). Biological parametric mapping: a statistical toolbox for multimodality brain image analysis. NeuroImage, 34(1), 137–143. doi: 10.1016/j.neuroimage.2006.09.011.
  8. Chételat, G., Desgranges, B., de La Sayette, V., Viader, F., Berkouk, K., Landeau, B., … Eustache, F. (2003). Dissociating atrophy and hypometabolism impact on episodic memory in mild cognitive impairment. Brain: A Journal of Neurology, 126(Pt 9), 1955–1967. doi:10.1093/brain/awg196.Google Scholar
  9. Chételat, G., Desgranges, B., Landeau, B., Mézenge, F., Poline, J. B., de La Sayette, V., … Baron, J.-C. (2008). Direct voxel-based comparison between grey matter hypometabolism and atrophy in Alzheimer’s disease. Brain: A Journal of Neurology, 131(Pt 1), 60–71. doi: 10.1093/brain/awm288.
  10. Couto, B., Manes, F., Montañés, P., Matallana, D., Reyes, P., Velasquez, M., … Ibáñez, A. (2013). Structural neuroimaging of social cognition in progressive non-fluent aphasia and behavioral variant of frontotemporal dementia. Frontiers in Human Neuroscience, 7, 467. doi: 10.3389/fnhum.2013.00467
  11. de Souza, L. C., Chupin, M., Bertoux, M., Lehéricy, S., Dubois, B., Lamari, F., … Sarazin, M. (2013). Is hippocampal volume a good marker to differentiate Alzheimer’s disease from frontotemporal dementia? Journal of Alzheimer’s Disease: JAD, 36(1), 57–66. doi: 10.3233/JAD-122293.
  12. Desgranges, B., Matuszewski, V., Piolino, P., Chételat, G., Mézenge, F., Landeau, B., … Eustache, F. (2007). Anatomical and functional alterations in semantic dementia: a voxel-based MRI and PET study. Neurobiology of Aging, 28(12), 1904–1913. doi: 10.1016/j.neurobiolaging.2006.08.006.
  13. Diehl, J., Grimmer, T., Drzezga, A., Riemenschneider, M., Förstl, H., & Kurz, A. (2004). Cerebral metabolic patterns at early stages of frontotemporal dementia and semantic dementia. A PET study. Neurobiology of Aging, 25(8), 1051–1056. doi: 10.1016/j.neurobiolaging.2003.10.007.CrossRefPubMedGoogle Scholar
  14. Diehl-Schmid, J., Grimmer, T., Drzezga, A., Bornschein, S., Riemenschneider, M., Förstl, H., … Kurz, A. (2007). Decline of cerebral glucose metabolism in frontotemporal dementia: a longitudinal 18F-FDG-PET-study. Neurobiology of Aging, 28(1), 42–50. doi: 10.1016/j.neurobiolaging.2005.11.002
  15. Eustache, F., Desgranges, B., Giffard, B., de La Sayette, V., & Baron, J. C. (2001). Entorhinal cortex disruption causes memory deficit in early Alzheimer’s disease as shown by PET. Neuroreport, 12(4), 683–685 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11277563.CrossRefPubMedGoogle Scholar
  16. Franceschi, M., Anchisi, D., Pelati, O., Zuffi, M., Matarrese, M., Moresco, R. M., … Perani, D. (2005). Glucose metabolism and serotonin receptors in the frontotemporal lobe degeneration. Annals of Neurology, 57(2), 216–225. doi: 10.1002/ana.20365
  17. Frisch, S., Dukart, J., Vogt, B., Horstmann, A., Becker, G., Villringer, A., … Schroeter, M. L. (2013). Dissociating memory networks in early Alzheimer’s disease and frontotemporal lobar degeneration - a combined study of hypometabolism and atrophy. PloS One, 8(2), e55251. doi: 10.1371/journal.pone.0055251
  18. Garraux, G., Salmon, E., Degueldre, C., Lemaire, C., Laureys, S., & Franck, G. (1999a). Comparison of impaired subcortico-frontal metabolic networks in normal aging, subcortico-frontal dementia, and cortical frontal dementia. NeuroImage, 10(2), 149–162. doi: 10.1006/nimg.1999.0463.CrossRefPubMedGoogle Scholar
  19. Garraux, G., Salmon, E., Degueldre, C., Lemaire, C., & Franck, G. (1999b). Medial temporal lobe metabolic impairment in dementia associated with motor neuron disease. Journal of the Neurological Sciences, 168(2), 145–150 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10526199.CrossRefPubMedGoogle Scholar
  20. Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N., Friston, K. J., & Frackowiak, R. S. (2001). A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage, 14(1 Pt 1), 21–36. doi: 10.1006/nimg.2001.0786.CrossRefPubMedGoogle Scholar
  21. Graham, A., Davies, R., Xuereb, J., Halliday, G., Kril, J., Creasey, H., … Hodges, J. (2005). Pathologically proven frontotemporal dementia presenting with severe amnesia. Brain: A Journal of Neurology, 128(Pt 3), 597–605. doi: 10.1093/brain/awh348.
  22. Grossman, M., McMillan, C., Moore, P., Ding, L., Glosser, G., Work, M., & Gee, J. (2004). What’s in a name: voxel-based morphometric analyses of MRI and naming difficulty in alzheimer's disease, frontotemporal dementia and corticobasal degeneration. Brain: A Journal of Neurology, 127(Pt 3), 628–649. doi: 10.1093/brain/awh075.Google Scholar
  23. Hodges, J. R., Davies, R. R., Xuereb, J. H., Casey, B., Broe, M., Bak, T. H., … Halliday, G. M. (2004). Clinicopathological correlates in frontotemporal dementia. Annals of Neurology, 56(3), 399–406. doi: 10.1002/ana.20203
  24. Hodges, J. R., & Miller, B. (2001). The classification, genetics and neuropathology of frontotemporal dementia. Introduction to the special topic papers: part I. Neurocase, 7(1), 31–35. doi: 10.1093/neucas/7.1.31.CrossRefPubMedGoogle Scholar
  25. Hou, C. E., Miller, B. L., & Kramer, J. H. (2005). Patterns of autobiographical memory loss in dementia. International Journal of Geriatric Psychiatry, 20(9), 809–815. doi: 10.1002/gps.1361.CrossRefPubMedGoogle Scholar
  26. Ikeda, M., Brown, J., Holland, A. J., Fukuhara, R., & Hodges, J. R. (2002). Changes in appetite, food preference, and eating habits in frontotemporal dementia and Alzheimer’s disease. Journal of Neurology, Neurosurgery, and Psychiatry, 73(4), 371–376.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Irish, M., Hornberger, M., Lah, S., Miller, L., Pengas, G., Nestor, P. J., … Piguet, O. (2011). Profiles of recent autobiographical memory retrieval in semantic dementia, behavioural-variant frontotemporal dementia, and aAlzheimer’s disease. Neuropsychologia, 49(9), 2694–2702. doi: 10.1016/j.neuropsychologia.2011.05.017.
  28. Irish, M., Piguet, O., Hodges, J. R., & Hornberger, M. (2014). Common and unique gray matter correlates of episodic memory dysfunction in frontotemporal dementia and alzheimer’s disease. Human Brain Mapping, 35(4), 1422–1435. doi: 10.1002/hbm.22263.CrossRefPubMedGoogle Scholar
  29. Ishii, K., Sakamoto, S., Sasaki, M., Kitagaki, H., Yamaji, S., Hashimoto, M., … Mori, E. (1998). Cerebral glucose metabolism in patients with frontotemporal dementia. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 39(11), 1875–1878. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9829574.
  30. Jeong, Y., Cho, S. S., Park, J. M., Kang, S. J., Lee, J. S., Kang, E., … Kim, S. E. (2005). 18F-FDG PET findings in frontotemporal dementia: an SPM analysis of 29 patients. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 46(2), 233–239. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15695781.
  31. Josephs, K. A., Lin, W.-L., Ahmed, Z., Stroh, D. A., Graff-Radford, N. R., & Dickson, D. W. (2008). Frontotemporal lobar degeneration with ubiquitin-positive, but TDP-43-negative inclusions. Acta Neuropathologica, 116(2), 159–167. doi: 10.1007/s00401-008-0397-8.CrossRefPubMedGoogle Scholar
  32. Kanda, T., Ishii, K., Uemura, T., Miyamoto, N., Yoshikawa, T., Kono, A. K., & Mori, E. (2008). Comparison of grey matter and metabolic reductions in frontotemporal dementia using FDG-PET and voxel-based morphometric MR studies. European Journal of Nuclear Medicine and Molecular Imaging, 35(12), 2227–2234. doi: 10.1007/s00259-008-0871-5.CrossRefPubMedGoogle Scholar
  33. Kersaitis, C., Halliday, G. M., & Kril, J. J. (2004). Regional and cellular pathology in frontotemporal dementia: relationship to stage of disease in cases with and without pick bodies. Acta Neuropathologica, 108(6), 515–523. doi: 10.1007/s00401-004-0917-0.CrossRefPubMedGoogle Scholar
  34. Kipps, C. M., Hodges, J. R., Fryer, T. D., & Nestor, P. J. (2009). Combined magnetic resonance imaging and positron emission tomography brain imaging in behavioural variant frontotemporal degeneration: refining the clinical phenotype. Brain: A Journal of Neurology, 132(Pt 9), 2566–2578. doi: 10.1093/brain/awp077.CrossRefGoogle Scholar
  35. Kipps, C. M., Nestor, P. J., Fryer, T. D., & Hodges, J. R. (2007). Behavioural variant frontotemporal dementia: not all it seems? Neurocase, 13(4), 237–247.CrossRefPubMedGoogle Scholar
  36. Kril, J. J., & Halliday, G. M. (2004). Clinicopathological staging of frontotemporal dementia severity: correlation with regional atrophy. Dementia and Geriatric Cognitive Disorders, 17(4), 311–315. doi: 10.1159/000077161.CrossRefPubMedGoogle Scholar
  37. Kril, J. J., Macdonald, V., Patel, S., Png, F., & Halliday, G. M. (2005). Distribution of brain atrophy in behavioral variant frontotemporal dementia. Journal of the Neurological Sciences, 232(1–2), 83–90. doi.  10.1016/j.jns.2005.02.003.
  38. La Joie, R., Landeau, B., Perrotin, A., Bejanin, A., Egret, S., Pélerin, A., … Chételat, G. (2014). Intrinsic connectivity identifies the hippocampus as a main crossroad between Alzheimer’s and semantic dementia-targeted networks. Neuron, 81(6), 1417–1428. doi: 10.1016/j.neuron.2014.01.026
  39. La Joie, R., Perrotin, A., Barré, L., Hommet, C., Mézenge, F., Ibazizene, M., … Chételat, G. (2012). Region-specific hierarchy between atrophy, hypometabolism, and β-amyloid (Aβ) load in Alzheimer’s disease dementia. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 32(46), 16265–16273. doi: 10.1523/JNEUROSCI.2170-12.2012.
  40. Laisney, M., Matuszewski, V., Mézenge, F., Belliard, S., de La Sayette, V., Eustache, F., & Desgranges, B. (2009). The underlying mechanisms of verbal fluency deficit in frontotemporal dementia and semantic dementia. Journal of Neurology, 256(7), 1083–1094. doi: 10.1007/s00415-009-5073-y.CrossRefPubMedGoogle Scholar
  41. Lillo, P., Mioshi, E., Burrell, J. R., Kiernan, M. C., Hodges, J. R., & Hornberger, M. (2012). Grey and white matter changes across the amyotrophic lateral sclerosis-frontotemporal dementia continuum. PloS One, 7(8), e43993. doi: 10.1371/journal.pone.0043993.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lindberg, O., Walterfang, M., Looi, J. C. L., Malykhin, N., Ostberg, P., Zandbelt, B., … Wahlund, L.-O. (2012). Hippocampal shape analysis in Alzheimer’s disease and frontotemporal lobar degeneration subtypes. Journal of Alzheimer’s Disease: JAD, 30(2), 355–365. doi: 10.3233/JAD-2012-112210.
  43. Matuszewski, V., Piolino, P., de La Sayette, V., Lalevée, C., Pélerin, A., Dupuy, B., … Desgranges, B. (2006). Retrieval mechanisms for autobiographical memories: insights from the frontal variant of frontotemporal dementia. Neuropsychologia, 44(12), 2386–2397. doi: 10.1016/j.neuropsychologia.2006.04.031.
  44. Mendez, M. F., Shapira, J. S., McMurtray, A., Licht, E., & Miller, B. L. (2007). Accuracy of the clinical evaluation for frontotemporal dementia. Archives of Neurology, 64(6), 830–835. doi: 10.1001/archneur.64.6.830.CrossRefPubMedGoogle Scholar
  45. Mercy, L., Hodges, J. R., Dawson, K., Barker, R. A., & Brayne, C. (2008). Incidence of early-onset dementias in cambridgeshire, United Kingdom. Neurology, 71(19), 1496–1499. doi: 10.1212/01.wnl.0000334277.16896.fa.CrossRefPubMedGoogle Scholar
  46. Mevel, K., Desgranges, B., Baron, J.-C., Landeau, B., De la Sayette, V., Viader, F., … Chételat, G. (2007). Detecting hippocampal hypometabolism in Mild Cognitive Impairment using automatic voxel-based approaches. NeuroImage, 37(1), 18–25. doi: 10.1016/j.neuroimage.2007.04.048.
  47. Möller, C., Dieleman, N., van der Flier, W. M., Versteeg, A., Pijnenburg, Y., Scheltens, P., … Vrenken, H. (2015). More atrophy of deep gray matter structures in frontotemporal dementia compared to Alzheimer’s disease. Journal of Alzheimer’s Disease: JAD, 44(2), 635–647. doi: 10.3233/JAD-141230.
  48. Müller-Gärtner, H. W., Links, J. M., Prince, J. L., Bryan, R. N., McVeigh, E., Leal, J. P., … Frost, J. J. (1992). Measurement of radiotracer concentration in brain gray matter using positron emission tomography: MRI-based correction for partial volume effects. Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 12(4), 571–583. doi: 10.1038/jcbfm.1992.81.
  49. Muñoz-Ruiz, M. Á., Hartikainen, P., Koikkalainen, J., Wolz, R., Julkunen, V., Niskanen, E., … Soininen, H. (2012). Structural MRI in frontotemporal dementia: comparisons between hippocampal volumetry, tensor-based morphometry and voxel-based morphometry. PloS One, 7(12), e52531. doi: 10.1371/journal.pone.0052531.
  50. Neary, D., Snowden, J. S., Gustafson, L., Passant, U., Stuss, D., Black, S., … Benson, D. F. (1998). Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology, 51(6), 1546–1554. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9855500.
  51. Nyatsanza, S., Shetty, T., Gregory, C., Lough, S., Dawson, K., & Hodges, J. R. (2003). A study of stereotypic behaviours in Alzheimer’s disease and frontal and temporal variant frontotemporal dementia. Journal of Neurology, Neurosurgery, and Psychiatry, 74(10), 1398–1402.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Pasquier, F., Grymonprez, L., Lebert, F., & Van der Linden, M. (2001). Memory impairment differs in frontotemporal dementia and Alzheimer’s disease. Neurocase, 7(2), 161–171. doi: 10.1093/neucas/7.2.161.CrossRefPubMedGoogle Scholar
  53. Perry, D. C., Whitwell, J. L., Boeve, B. F., Pankratz, V. S., Knopman, D. S., Petersen, R. C., … Josephs, K. A. (2012). Voxel-based morphometry in patients with obsessive-compulsive behaviors in behavioral variant frontotemporal dementia. European Journal of Neurology: The Official Journal of the European Federation of Neurological Societies, 19(6), 911–917. doi: 10.1111/j.1468-1331.2011.03656.x.
  54. Piguet, O. (2011). Eating disturbance in behavioural-variant frontotemporal dementia, 589–593. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21584651.
  55. Piguet, O., Hornberger, M., Mioshi, E., & Hodges, J. R. (2011). Behavioural-variant frontotemporal dementia: diagnosis, clinical staging, and management. The Lancet. Neurology, 10(2), 162–172. doi: 10.1016/S1474-4422(10)70299-4.CrossRefPubMedGoogle Scholar
  56. Piguet, O., Hornberger, M., Shelley, B. P., Kipps, C. M., & Hodges, J. R. (2009). Sensitivity of current criteria for the diagnosis of behavioral variant frontotemporal dementia. Neurology, 72(8), 732–737. doi: 10.1212/01.wnl.0000343004.98599.45.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Pijnenburg, Y. A. L., Gillissen, F., Jonker, C., & Scheltens, P. (2004). Initial complaints in frontotemporal lobar degeneration. Dementia and Geriatric Cognitive Disorders, 17(4), 302–306. doi: 10.1159/000077159.CrossRefPubMedGoogle Scholar
  58. Piolino, P., Chételat, G., Matuszewski, V., Landeau, B., Mézenge, F., Viader, F., … Desgranges, B. (2007). In search of autobiographical memories: a PET study in the frontal variant of frontotemporal dementia. Neuropsychologia, 45(12), 2730–2743. doi: 10.1016/j.neuropsychologia.2007.04.013.
  59. Pitel, A.-L., Aupée, A.-M., Chételat, G., Mézenge, F., Beaunieux, H., de la Sayette, V., … Desgranges, B. (2009). Morphological and glucose metabolism abnormalities in alcoholic Korsakoff’s syndrome: group comparisons and individual analyses. PloS One, 4(11), e7748. doi: 10.1371/journal.pone.0007748.
  60. Quarantelli, M., Berkouk, K., Prinster, A., Landeau, B., Svarer, C., Balkay, L., … Salvatore, M. (2004). Integrated software for the analysis of brain PET/SPECT studies with partial-volume-effect correction. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 45(2), 192–201. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14960635.
  61. Rabinovici, G. D., Seeley, W. W., Kim, E. J., Gorno-Tempini, M. L., Rascovsky, K., Pagliaro, T. A., … Rosen, H. J. (2007). Distinct MRI atrophy patterns in autopsy-proven Alzheimer’s disease and frontotemporal lobar degeneration. American Journal of Alzheimer’s Disease and Other Dementias, 22(6), 474–488. doi: 10.1177/1533317507308779
  62. Rascovsky, K., Hodges, J. R., Kipps, C. M., Johnson, J. K., Seeley, W. W., Mendez, M. F., … Miller, B. M. (2007). Diagnostic criteria for the behavioral variant of frontotemporal dementia (bvFTD): current limitations and future directions. Alzheimer disease and Associated Disorders, 21(4), S14–S18. doi: 10.1097/WAD.0b013e31815c3445.
  63. Rascovsky, K., Hodges, J. R., Knopman, D., Mendez, M. F., Kramer, J. H., Neuhaus, J., … Miller, B. L. (2011). Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain, 134(9), 2456–2477. doi: 10.1093/brain/awr179.
  64. Richards, B. A., Chertkow, H., Singh, V., Robillard, A., Massoud, F., Evans, A. C., & Kabani, N. J. (2009). Patterns of cortical thinning in Alzheimer’s disease and frontotemporal dementia. Neurobiology of Aging, 30(10), 1626–1636. doi: 10.1016/j.neurobiolaging.2007.12.019.CrossRefPubMedGoogle Scholar
  65. Rohrer, J. D., Ridgway, G. R., Modat, M., Ourselin, S., Mead, S., Fox, N. C., … Warren, J. D. (2010). Distinct profiles of brain atrophy in frontotemporal lobar degeneration caused by progranulin and tau mutations. NeuroImage, 53(3), 1070–1076. doi: 10.1016/j.neuroimage.2009.12.088.
  66. Rosen, H. J., Gorno-Tempini, M. L., Goldman, W. P., Perry, R. J., Schuff, N., Weiner, M., … Miller, B. L. (2002). Patterns of brain atrophy in frontotemporal dementia and semantic dementia. Neurology, 58(2), 198–208. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11805245.
  67. Rousset, O. G., Ma, Y., & Evans, A. C. (1998). Correction for partial volume effects in PET: principle and validation. Journal of Nuclear Medicine: Official Publication, Society of Nuclear Medicine, 39(5), 904–911 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9591599.Google Scholar
  68. Salmon, E., Garraux, G., Delbeuck, X., Collette, F., Kalbe, E., Zuendorf, G., … Herholz, K. (2003). Predominant ventromedial frontopolar metabolic impairment in frontotemporal dementia. NeuroImage, 20(1), 435–440. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14527604
  69. Schroeter, M. L., Laird, A. R., Chwiesko, C., Deuschl, C., Schneider, E., Bzdok, D., … Neumann, J. (2014). Conceptualizing neuropsychiatric diseases with multimodal data-driven meta-analyses - the case of behavioral variant frontotemporal dementia. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 57, 22–37. doi: 10.1016/j.cortex.2014.02.022.
  70. Schroeter, M. L., Vogt, B., Frisch, S., Becker, G., Seese, A., Barthel, H., … Sabri, O. (2011). Dissociating behavioral disorders in early dementia-an FDG-PET study. Psychiatry Research, 194(3), 235–244. doi: 10.1016/j.pscychresns.2011.06.009.
  71. Seeley, W. W., Crawford, R., Rascovsky, K., Kramer, J. H., Weiner, M., Miller, B. L., & Gorno-Tempini, M. L. (2008). Frontal paralimbic network atrophy in very mild behavioral variant frontotemporal dementia. Archives of Neurology, 65(2), 249–255. doi: 10.1001/archneurol.2007.38.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Shimizu, S., Zhang, Y., Laxamana, J., Miller, B. L., Kramer, J. H., Weiner, M. W., & Schuff, N. (2010). Concordance and discordance between brain perfusion and atrophy in frontotemporal dementia. Brain Imaging and Behavior, 4(1), 46–54. doi: 10.1007/s11682-009-9084-1.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Snowden, J. S., Bathgate, D., Varma, A., Blackshaw, A., Gibbons, Z. C., & Neary, D. (2001). Distinct behavioural profiles in frontotemporal dementia and semantic dementia. Journal of Neurology, Neurosurgery, and Psychiatry, 70(3), 323–332 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11181853.CrossRefPubMedPubMedCentralGoogle Scholar
  74. Tan, R. H., Wong, S., Hodges, J. R., Halliday, G. M., & Hornberger, M. (2013). Retrosplenial cortex (BA 29) volumes in behavioral variant frontotemporal dementia and Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 35(3–4), 177–182. doi: 10.1159/000346392.CrossRefPubMedGoogle Scholar
  75. Villain, N., Desgranges, B., Viader, F., de la Sayette, V., Mézenge, F., Landeau, B., … Chételat, G. (2008). Relationships between hippocampal atrophy, white matter disruption, and gray matter hypometabolism in Alzheimer’s disease. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28(24), 6174–6181. doi: 10.1523/JNEUROSCI.1392-08.2008.
  76. Whitwell, J. L., Avula, R., Senjem, M. L., Kantarci, K., Weigand, S. D., Samikoglu, A., … Jack, C. R. J. (2010). Gray and white matter water diffusion in the syndromic variants of frontotemporal dementia. Neurology, 74(16), 1279–1287. doi: 10.1212/WNL.0b013e3181d9edde.
  77. Whitwell, J. L., & Josephs, K. A. (2011). Neuroimaging in frontotemporal lobar degeneration–predicting molecular pathology. Nature Reviews. Neurology, 8(3), 131–142. doi: 10.1038/nrneurol.2012.7.CrossRefGoogle Scholar
  78. Williams, G. B., Nestor, P. J., & Hodges, J. R. (2005). Neural correlates of semantic and behavioural deficits in frontotemporal dementia. NeuroImage, 24(4), 1042–1051. doi: 10.1016/j.neuroimage.2004.10.023.CrossRefPubMedGoogle Scholar
  79. Woost, T. B., Dukart, J., Frisch, S., Barthel, H., Sabri, O., Mueller, K., & Schroeter, M. L. (2013). Neural correlates of the DemTect in Alzheimer’s disease and frontotemporal lobar degeneration - a combined MRI & FDG-PET study. NeuroImage. Clinical, 2, 746–758. doi: 10.1016/j.nicl.2013.05.008.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Zhang, Y., Tartaglia, M. C., Schuff, N., Chiang, G. C., Ching, C., Rosen, H. J., … Weiner, M. W. (2013). MRI signatures of brain macrostructural atrophy and microstructural degradation in frontotemporal lobar degeneration subtypes. Journal of Alzheimer’s Disease: JAD, 33(2), 431–444. doi: 10.3233/JAD-2012-121156.

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • M-S. Buhour
    • 1
    • 2
    • 3
    • 4
  • F. Doidy
    • 1
    • 2
    • 3
    • 4
  • M. Laisney
    • 1
    • 2
    • 3
    • 4
  • A. L. Pitel
    • 1
    • 2
    • 3
    • 4
  • V. de La Sayette
    • 1
    • 2
    • 3
    • 5
  • F. Viader
    • 1
    • 2
    • 3
    • 5
  • F. Eustache
    • 1
    • 2
    • 3
    • 4
  • B. Desgranges
    • 1
    • 2
    • 3
    • 4
  1. 1.InsermU1077CaenFrance
  2. 2.Université de Caen NormandieUMR-S1077CaenFrance
  3. 3.Ecole Pratique des Hautes EtudesUMR-S1077CaenFrance
  4. 4.Centre Hospitalier Universitaire de CaenU1077CaenFrance
  5. 5.Centre Hospitalier Universitaire de CaenService de NeurologieCaenFrance

Personalised recommendations