Brain Imaging and Behavior

, Volume 11, Issue 1, pp 129–140 | Cite as

Longitudinal assessment of local and global functional connectivity following sports-related concussion

  • Timothy B. Meier
  • Patrick S. F. Bellgowan
  • Andrew R. Mayer
Original Research

Abstract

Growing evidence suggests that sports-related concussions (SRC) may lead to acute changes in intrinsic functional connectivity, although most studies to date have been cross-sectional in nature with relatively modest sample sizes. We longitudinally assessed changes in local and global resting state functional connectivity using metrics that do not require a priori seed or network selection (regional homogeneity; ReHo and global brain connectivity; GBC, respectively). A large sample of collegiate athletes (N = 43) was assessed approximately one day (1.74 days post-injury, N = 34), one week (8.44 days, N = 34), and one month post-concussion (32.47 days, N = 30). Healthy contact sport-athletes served as controls (N = 51). Concussed athletes showed improvement in mood symptoms at each time point (p’s < 0.05), but had significantly higher mood scores than healthy athletes at every time point (p’s < 0.05). In contrast, self-reported symptoms and cognitive deficits improved over time following concussion (p’s < 0.001), returning to healthy levels by one week post-concussion. ReHo in sensorimotor, visual, and temporal cortices increased over time post-concussion, and was greatest at one month post-injury. Conversely, ReHo in the frontal cortex decreased over time following SRC, with the greatest decrease evident at one month post-concussion. Differences in ReHo relative to healthy athletes were primarily observed at one month post-concussion rather than the more acute time points. Contrary to our hypothesis, no significant cross-sectional or longitudinal differences in GBC were observed. These results are suggestive of a delayed onset of local connectivity changes following SRC.

Keywords

fMRI Mild traumatic brain injury Regional homogeneity Resting state 

Notes

Acknowledgments

This research was conducted using internal funds from the Laureate Institute for Brain Research, which is supported by The William K. Warren Foundation. The funder had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; and preparation, review, or approval of the manuscript. Dr. Meier had full access to all of the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. The authors thank the psychiatric assessment team, the MRI technicians, and Dr. Rashmi Singh at the Laureate Institute for Brain Research for their assistance in data collection and Christopher Nerio, David Polanski, Dr. Thomas Allen, and Dr. Lamont Cavanagh for athlete referral and injury oversight.

Compliance with ethical standards

Disclosures and informed consent

The authors declare that they have no conflict of interest. This article was prepared while Dr. Bellgowan was employed at The National Institute of Neurological Disorders and Stroke. The opinions expressed in this article are the author’s own and do not reflect the view of the National Institutes of Health, the Department of Health and Human Services, or the United States government. All procedures performed were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Supplementary material

11682_2016_9520_MOESM1_ESM.docx (6.6 mb)
ESM 1 (DOCX 6761 kb)

References

  1. Abbas, K., Shenk, T. E., Poole, V. N., Breedlove, E. L., Leverenz, L. J., Nauman, E. A., et al. (2015). Alteration of default mode network in high school football athletes due to repetitive subconcussive mild traumatic brain injury: a resting-state functional magnetic resonance imaging study. Brain Connectivity, 5(2), 91–101. doi: 10.1089/brain.2014.0279.CrossRefPubMedGoogle Scholar
  2. Avants, B. B., Tustison, N. J., Song, G., Cook, P. A., Klein, A., & Gee, J. C. (2011). A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage, 54(3), 2033–2044. doi: 10.1016/j.neuroimage.2010.09.025.CrossRefPubMedGoogle Scholar
  3. Borich, M., Babul, A. N., Yuan, P. H., Boyd, L., & Virji-Babul, N. (2015). Alterations in resting-state brain networks in concussed adolescent athletes. Journal of Neurotrauma, 32(4), 265–271. doi: 10.1089/neu.2013.3269.CrossRefPubMedGoogle Scholar
  4. Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain's default network: anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38. doi: 10.1196/annals.1440.011.CrossRefPubMedGoogle Scholar
  5. Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T., et al. (2009). Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease. The Journal of Neuroscience, 29(6), 1860–1873. doi: 10.1523/JNEUROSCI.5062-08.2009.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cernich, A., Reeves, D., Sun, W., & Bleiberg, J. (2007). Automated neuropsychological assessment metrics sports medicine battery. Arch Clin Neuropsychol, 22 Suppl 1, S101-114. doi: 10.1016/j.acn.2006.10.008.
  7. Chen, G., Saad, Z. S., Britton, J. C., Pine, D. S., & Cox, R. W. (2013). Linear mixed-effects modeling approach to FMRI group analysis. NeuroImage, 73, 176–190. doi: 10.1016/j.neuroimage.2013.01.047.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cole, M. W., Pathak, S., & Schneider, W. (2010). Identifying the brain's most globally connected regions. NeuroImage, 49(4), 3132–3148. doi: 10.1016/j.neuroimage.2009.11.001.CrossRefPubMedGoogle Scholar
  9. Cox, R. W. (1996). AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29, 162–173.CrossRefPubMedGoogle Scholar
  10. Czerniak, S.M., Sikoglu, E.M., Liso Navarro, A.A., McCafferty, J., Eisenstock, J., Stevenson, J. H., et al. (2015). A resting state functional magnetic resonance imaging study of concussion in collegiate athletes. Brain Imaging and Behavior, 9(2), 323–332. doi: 10.1007/s11682-014-9312-1.
  11. Dettwiler, A., Murugavel, M., Putukian, M., Cubon, V., Furtado, J., & Osherson, D. (2014). Persistent differences in patterns of brain activation after sports-related concussion: a longitudinal functional magnetic resonance imaging study. Journal of Neurotrauma, 31(2), 180–188. doi: 10.1089/neu.2013.2983.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Eickhoff, S. B., Stephan, K. E., Mohlberg, H., Grefkes, C., Fink, G. R., Amunts, K., et al. (2005). A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage, 25(4), 1325–1335. doi: 10.1016/j.neuroimage.2004.12.034.CrossRefPubMedGoogle Scholar
  13. Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., et al. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341–355.CrossRefPubMedGoogle Scholar
  14. Giza, C. C., & Hovda, D. A. (2014). The new neurometabolic cascade of concussion. Neurosurgery, 75 Suppl 4, S24-33. doi: 10.1227/NEU.0000000000000505.
  15. Gotts, S. J., Simmons, W. K., Milbury, L. A., Wallace, G. L., Cox, R. W., & Martin, A. (2012). Fractionation of social brain circuits in autism spectrum disorders. Brain, 135(Pt 9), 2711–2725. doi: 10.1093/brain/aws160.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Guskiewicz, K. M., McCrea, M., Marshall, S. W., Cantu, R. C., Randolph, C., Barr, W., et al. (2003). Cumulative effects associated with recurrent concussion in collegiate football players: the NCAA concussion study. JAMA, 290(19), 2549–2555. doi: 10.1001/jama.290.19.2549.CrossRefPubMedGoogle Scholar
  17. Henry, L. C., Tremblay, S., Boulanger, Y., Ellemberg, D., & Lassonde, M. (2010). Neurometabolic changes in the acute phase after sports concussions correlate with symptom severity. Journal of Neurotrauma, 27(1), 65–76. doi: 10.1089/neu.2009.0962.CrossRefPubMedGoogle Scholar
  18. Jiang, L., Xu, T., He, Y., Hou, X. H., Wang, J., Cao, X. Y., et al. (2015). Toward neurobiological characterization of functional homogeneity in the human cortex: regional variation, morphological association and functional covariance network organization. Brain Structure & Function, 220(5), 2485–2507. doi: 10.1007/s00429-014-0795-8.CrossRefGoogle Scholar
  19. Jo, H. J., Saad, Z. S., Simmons, W. K., Milbury, L. A., & Cox, R. W. (2010). Mapping sources of correlation in resting state FMRI, with artifact detection and removal. NeuroImage, 52(2), 571–582. doi: 10.1016/j.neuroimage.2010.04.246.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Johnson, B., Zhang, K., Gay, M., Horovitz, S., Hallett, M., Sebastianelli, W., et al. (2012). Alteration of brain default network in subacute phase of injury in concussed individuals: resting-state fMRI study. NeuroImage, 59(1), 511–518. doi: 10.1016/j.neuroimage.2011.07.081.CrossRefPubMedGoogle Scholar
  21. Johnson, V. E., Stewart, W., & Smith, D. H. (2013). Axonal pathology in traumatic brain injury. Experimental Neurology, 246, 35–43. doi: 10.1016/j.expneurol.2012.01.013.CrossRefPubMedGoogle Scholar
  22. Johnson, B., Neuberger, T., Gay, M., Hallett, M., & Slobounov, S. (2014). Effects of subconcussive head trauma on the default mode network of the brain. Journal of Neurotrauma, 31(23), 1907–1913. doi: 10.1089/neu.2014.3415.
  23. Jones, T. B., Bandettini, P. A., Kenworthy, L., Case, L. K., Milleville, S. C., Martin, A., et al. (2010). Sources of group differences in functional connectivity: an investigation applied to autism spectrum disorder. NeuroImage, 49(1), 401–414. doi: 10.1016/j.neuroimage.2009.07.051.CrossRefPubMedGoogle Scholar
  24. Karr, J. E., Areshenkoff, C. N., & Garcia-Barrera, M. A. (2014). The neuropsychological outcomes of concussion: a systematic review of meta-analyses on the cognitive sequelae of mild traumatic brain injury. Neuropsychology, 28(3), 321–336. doi: 10.1037/neu0000037.CrossRefPubMedGoogle Scholar
  25. Kasahara, M., Menon, D. K., Salmond, C. H., Outtrim, J. G., Taylor Tavares, J. V., Carpenter, T. A., et al. (2010). Altered functional connectivity in the motor network after traumatic brain injury. Neurology, 75(2), 168–176. doi: 10.1212/WNL.0b013e3181e7ca58.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lew, H. L., Pogoda, T. K., Baker, E., Stolzmann, K. L., Meterko, M., Cifu, D. X., et al. (2011). Prevalence of dual sensory impairment and its association with traumatic brain injury and blast exposure in OEF/OIF veterans. The Journal of Head Trauma Rehabilitation, 26(6), 489–496. doi: 10.1097/HTR.0b013e318204e54b.CrossRefPubMedGoogle Scholar
  27. Mayer, A. R., Bellgowan, P. S., & Hanlon, F. M. (2015a). Functional magnetic resonance imaging of mild traumatic brain injury. Neuroscience and Biobehavioral Reviews, 49, 8–18. doi: 10.1016/j.neubiorev.2014.11.016.CrossRefPubMedGoogle Scholar
  28. Mayer, A. R., Hanlon, F. M., Dodd, A. B., Ling, J. M., Klimaj, S. D., & Meier, T. B. (2015b). A functional magnetic resonance imaging study of cognitive control and neurosensory deficits in mild traumatic brain injury. Human Brain Mapping, 36(11), 4394–4406. doi: 10.1002/hbm.22930.CrossRefPubMedPubMedCentralGoogle Scholar
  29. McCrea, M., Guskiewicz, K. M., Marshall, S. W., Barr, W., Randolph, C., Cantu, R. C., et al. (2003). Acute effects and recovery time following concussion in collegiate football players: the NCAA concussion study. JAMA, 290(19), 2556–2563. doi: 10.1001/jama.290.19.2556.CrossRefPubMedGoogle Scholar
  30. McCrory, P., Meeuwisse, W. H., Aubry, M., Cantu, B., Dvorak, J., Echemendia, R. J., et al. (2013). Consensus statement on concussion in sport: the 4th international conference on concussion in sport held in Zurich, November 2012. British Journal of Sports Medicine, 47(5), 250–258. doi: 10.1136/bjsports-2013-092313.CrossRefPubMedGoogle Scholar
  31. Meier, T. B., Bellgowan, P. S., Bergamino, M., Ling, J. M., & Mayer, A. R. (2015a). Thinner cortex in collegiate football players with, but not without, a self-reported history of concussion. Journal of Neurotrauma. doi: 10.1089/neu.2015.3919.Google Scholar
  32. Meier, T. B., Bellgowan, P. S., Singh, R., Kuplicki, R., Polanski, D. W., & Mayer, A. R. (2015b). Recovery of cerebral blood flow following sports-related concussion. JAMA Neurol, 72(5), 530–538. doi: 10.1001/jamaneurol.2014.4778.CrossRefPubMedGoogle Scholar
  33. Meier, T. B., Bergamino, M., Bellgowan, P. S., Teague, T. K., Ling, J. M., Jeromin, A., et al. (2015c). Longitudinal assessment of white matter abnormalities following sports-related concussion. Human Brain Mapping. doi: 10.1002/hbm.23072.PubMedCentralGoogle Scholar
  34. Militana, A. R., Donahue, M. J., Sills, A. K., Solomon, G. S., Gregory, A. J., Strother, M. K., et al. (2015). Alterations in default-mode network connectivity may be influenced by cerebrovascular changes within 1 week of sports related concussion in college varsity athletes: a pilot study. Brain Imaging and Behavior. doi: 10.1007/s11682-015-9407-3.Google Scholar
  35. Ogawa, S., Lee, T. M., Kay, A. R., & Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences of the United States of America, 87(24), 9868–9872.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Park, E., Bell, J. D., Siddiq, I. P., & Baker, A. J. (2009). An analysis of regional microvascular loss and recovery following two grades of fluid percussion trauma: a role for hypoxia-inducible factors in traumatic brain injury. Journal of Cerebral Blood Flow and Metabolism, 29(3), 575–584. doi: 10.1038/jcbfm.2008.151.CrossRefPubMedGoogle Scholar
  37. Patterson, Z. R., & Holahan, M. R. (2012). Understanding the neuroinflammatory response following concussion to develop treatment strategies. Frontiers in Cellular Neuroscience, 6, 58. doi: 10.3389/fncel.2012.00058.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Pogoda, T. K., Hendricks, A. M., Iverson, K. M., Stolzmann, K. L., Krengel, M. H., Baker, E., et al. (2012). Multisensory impairment reported by veterans with and without mild traumatic brain injury history. Journal of Rehabilitation Research and Development, 49(7), 971–984.CrossRefPubMedGoogle Scholar
  39. Roebuck-Spencer, T. M., Vincent, A. S., Gilliland, K., Johnson, D. R., & Cooper, D. B. (2013). Initial clinical validation of an embedded performance validity measure within the automated neuropsychological metrics (ANAM). Archives of Clinical Neuropsychology, 28(7), 700–710. doi: 10.1093/arclin/act055.CrossRefPubMedGoogle Scholar
  40. Seeley, W. W., Menon, V., Schatzberg, A. F., Keller, J., Glover, G. H., Kenna, H., et al. (2007). Dissociable intrinsic connectivity networks for salience processing and executive control. The Journal of Neuroscience, 27(9), 2349–2356. doi: 10.1523/JNEUROSCI.5587-06.2007.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Seichepine, D. R., Stamm, J. M., Daneshvar, D. H., Riley, D. O., Baugh, C. M., Gavett, B. E., et al. (2013). Profile of self-reported problems with executive functioning in college and professional football players. Journal of Neurotrauma, 30(14), 1299–1304. doi: 10.1089/neu.2012.2690.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Sepulcre, J., Liu, H., Talukdar, T., Martincorena, I., Yeo, B. T., & Buckner, R. L. (2010). The organization of local and distant functional connectivity in the human brain. PLoS Computational Biology, 6(6), e1000808. doi: 10.1371/journal.pcbi.1000808.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Sheline, Y. I., Barch, D. M., Price, J. L., Rundle, M. M., Vaishnavi, S. N., Snyder, A. Z., et al. (2009). The default mode network and self-referential processes in depression. Proceedings of the National Academy of Sciences of the United States of America, 106(6), 1942–1947. doi: 10.1073/pnas.0812686106.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Singh, R., Savitz, J., Teague, T. K., Polanski, D. W., Mayer, A. R., Bellgowan, P. S., et al. (2015). Mood symptoms correlate with kynurenine pathway metabolites following sports-related concussion. Journal of Neurology, Neurosurgery, and Psychiatry. doi: 10.1136/jnnp-2015-311369.PubMedGoogle Scholar
  45. Slobounov, S. M., Gay, M., Zhang, K., Johnson, B., Pennell, D., Sebastianelli, W., et al. (2011). Alteration of brain functional network at rest and in response to YMCA physical stress test in concussed athletes: RsFMRI study. NeuroImage, 55(4), 1716–1727. doi: 10.1016/j.neuroimage.2011.01.024.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Taylor, P. A., & Saad, Z. S. (2013). FATCAT: (an efficient) functional and tractographic connectivity analysis toolbox. Brain Connectivity, 3(5), 523–535. doi: 10.1089/brain.2013.0154.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Thorne, D. R. (2006). Throughput: a simple performance index with desirable characteristics. Behavior Research Methods, 38(4), 569–573.CrossRefPubMedGoogle Scholar
  48. Urban, K. J., Barlow, K. M., Jimenez, J. J., Goodyear, B. G., & Dunn, J. F. (2015). Functional near-infrared spectroscopy reveals reduced interhemispheric cortical communication after pediatric concussion. Journal of Neurotrauma, 32(11), 833–840. doi: 10.1089/neu.2014.3577.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E., & Buckner, R. L. (2008). Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. Journal of Neurophysiology, 100(6), 3328–3342. doi: 10.1152/jn.90355.2008.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Yeo, B. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., et al. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(3), 1125–1165. doi: 10.1152/jn.00338.2011.CrossRefPubMedGoogle Scholar
  51. Zang, Y., Jiang, T., Lu, Y., He, Y., & Tian, L. (2004). Regional homogeneity approach to fMRI data analysis. NeuroImage, 22(1), 394–400. doi: 10.1016/j.neuroimage.2003.12.030.CrossRefPubMedGoogle Scholar
  52. Zhan, J., Gao, L., Zhou, F., Kuang, H., Zhao, J., Wang, S., et al. (2015). Decreased regional homogeneity in patients with acute mild traumatic brain injury: a resting-state fMRI study. The Journal of Nervous and Mental Disease, 203(10), 786–791. doi: 10.1097/NMD.0000000000000368.CrossRefPubMedGoogle Scholar
  53. Zhang, L., Yang, K. H., & King, A. I. (2004). A proposed injury threshold for mild traumatic brain injury. Journal of Biomechanical Engineering, 126(2), 226–236.CrossRefPubMedGoogle Scholar
  54. Zhang, Z., Liu, Y., Jiang, T., Zhou, B., An, N., Dai, H., et al. (2012). Altered spontaneous activity in Alzheimer's disease and mild cognitive impairment revealed by regional homogeneity. NeuroImage, 59(2), 1429–1440. doi: 10.1016/j.neuroimage.2011.08.049.CrossRefPubMedGoogle Scholar
  55. Zhu, S., Fang, Z., Hu, S., Wang, Z., & Rao, H. (2013). Resting state brain function analysis using concurrent BOLD in ASL perfusion fMRI. PloS One, 8(6), e65884. doi: 10.1371/journal.pone.0065884.CrossRefPubMedPubMedCentralGoogle Scholar
  56. Zhu, D. C., Covassin, T., Nogle, S., Doyle, S., Russell, D., Pearson, R. L., et al. (2015). A potential biomarker in sports-related concussion: brain functional connectivity alteration of the default-mode network measured with longitudinal resting-state fMRI over thirty days. Journal of Neurotrauma, 32(5), 327–341. doi: 10.1089/neu.2014.3413.CrossRefPubMedGoogle Scholar
  57. Zuo, X. N., Xu, T., Jiang, L., Yang, Z., Cao, X. Y., He, Y., et al. (2013). Toward reliable characterization of functional homogeneity in the human brain: preprocessing, scan duration, imaging resolution and computational space. NeuroImage, 65, 374–386. doi: 10.1016/j.neuroimage.2012.10.017.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Timothy B. Meier
    • 1
    • 2
    • 3
  • Patrick S. F. Bellgowan
    • 4
  • Andrew R. Mayer
    • 2
    • 5
    • 6
  1. 1.Department of Neurosurgery, Neuroscience Research CenterMedical College of WisconsinMilwaukeeUSA
  2. 2.The Mind Research NetworkLovelace Biomedical and Environmental Research InstituteAlbuquerqueUSA
  3. 3.Laureate Institute for Brain ResearchTulsaUSA
  4. 4.National Institute of Neurological Disorders and StrokeNational Institutes of HealthMDUSA
  5. 5.Departments of Neurology and PsychiatryUniversity of New Mexico School of MedicineAlbuquerqueUSA
  6. 6.Department of PsychologyUniversity of New MexicoAlbuquerqueUSA

Personalised recommendations