Advertisement

Brain Imaging and Behavior

, Volume 11, Issue 1, pp 214–223 | Cite as

Cortical damage in the posterior visual pathway in patients with sialidosis type 1

  • Chin-Song Lu
  • Shu-Hang Ng
  • Szu-Chia Lai
  • Ling-Yuh Kao
  • Laura Liu
  • Wey-Yil Lin
  • Yi-Ming Wu
  • Yao-Liang Chen
  • Jiun-Jie Wang
Original Research

Abstract

In order to identify the cortical changes in patients with Sialidosis type 1, diffusion tensor imaging and resting state fMRI were acquired from 11 patients and 11 sex/age matched normal controls after clinical evaluations. The neuroimages from each participant were normalized and parcellated according to the Automatic Anatomical Labeling. Both the mean diffusivity and the corresponding functional connectivity were calculated from each cortical region. The white matter tract integrity was examined. The difference between patients and controls was examined using Student’s t-test and between patients with either homozygous or heterozygous mutations by Mann–Whitney U test, both at a threshold of 0.05. Increased mean diffusivity throughout the brain can be noticed in the patients, together with a compromised white matter tracts integrity. The most severely affected cortical regions are in the occipital lobe. Decreased functional connectivity was from the temporal and occipital lobes to the hippocampus and parahippocampus. In contrast, connectivity from thalamus was enhanced. Diffused cortical atrophy with posterior focal lesions was noticed. We concluded that MRI observed functional changes in the posterior cortical pathways in the patients with Sialidosis. The observation might be related to the cortical blindness due to an altered neural network and a compromised visual pathway in the patients.

Keywords

Cortical blindness Diffusion tensor imaging Posterior visual pathway Resting state fMRI Sialidosis 

Notes

Acknowledgments

The imaging facility was supported by the Center for Advanced Molecular Imaging and Translation, Chang Gung Memorial Hospital and Medical Imaging Research Center, Institute for Radiological Research of Chang Gung University /Chang Gung Memorial Hospital, Linkou. The patients were referred by Neuroscience Research Center of Chang Gung Memorial Hospital. The authors would like to thank Healthy Aging Research Center, Chang Gung University for additional support. The funding source had no involvement in the collection, analysis and interpretation data; in the writing of the report; and in the decision to submit the paper for publication.

Author contribution statement

Chin-Song Lu: substantial contributions to conception and design; drafting the article or revising it critically for important intellectual content;

Shu-Hang Ng:

Szu-Chia Lai:

Ling-Yuh Kao: analysis and interpretation of data;

Laura Liu:

Wey-Yil Lin:

Yi-Ming Wu: analysis and interpretation of data;

Yao-Liang Chen:

Jiun-Jie Wang: substantial contributions to conception and design; drafting the article; revising it critically for important intellectual content; final approval of the version to be published.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Fundings

This work was supported by grants from the Ministry of Science and Technology Taiwan (MOST103-2325-B-182-001), the Ministry of Education Taiwan (EMRPD1D0951 and EMRPD1E1731) and Chang-Gung University/Chang-Gung Memorial Hospital (CMRPD1C0293, CMRPD3D0012, CIRPD1E0061, BMRP655, CMRPD1B0331 and CMRPD1B0332).

References

  1. Alexander, A. L., Lee, J. E., Lazar, M., & Field, A. S. (2007). Diffusion tensor imaging of the brain. Neurotherapeutics, 4(3), 316–329.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amano, N., Yokoi, S., Akagi, M., Sakai, M., Yagishita, S., & Nakata, K. (1983). Neuropathological findings of an autopsy case of adult beta-galactosidase and neuraminidase deficiency. Acta Neuropathologica, 61(3–4), 283–290.CrossRefPubMedGoogle Scholar
  3. Basser, P. J., & Pierpaoli, C. (1996). Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. Journal of Magnetic Resonance Series B, 111(3), 209–219.CrossRefPubMedGoogle Scholar
  4. Bejjani, B. P., Arnulf, I., Vidailhet, M., Pidoux, B., Damier, P., Papadopoulos, S., et al. (2000). Irregular jerky tremor, myoclonus, and thalamus: a study using low-frequency stimulation. Movement Disorders: Official Journal of the Movement Disorder Society, 15(5), 919–924.CrossRefGoogle Scholar
  5. Biswal, B. B., Mennes, M., Zuo, X. N., Gohel, S., Kelly, C., Smith, S. M., et al. (2010). Toward discovery science of human brain function. Proceedings of the National Academy of Sciences of the United States of America, 107(10), 4734–4739.CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bullmore, E. T., Suckling, J., Overmeyer, S., Rabe-Hesketh, S., Taylor, E., & Brammer, M. J. (1999). Global, voxel, and cluster tests, by theory and permutation, for a difference between two groups of structural MR images of the brain. IEEE Transactions on Medical Imaging, 18(1), 32–42.CrossRefPubMedGoogle Scholar
  7. Chang, C. C., Chang, W. N., Lui, C. C., Huang, S. H., Lee, C. C., Chen, C., et al. (2011). Clinical significance of the pallidoreticular pathway in patients with carbon monoxide intoxication. Brain, 134(Pt 12), 3632–3646.CrossRefPubMedGoogle Scholar
  8. Chao-Gan, Y., & Yu-Feng, Z. (2010). DPARSF: a MATLAB toolbox for "pipeline" data analysis of resting-state fMRI. Frontiers in Systems Neuroscience, 413.Google Scholar
  9. Cook, P. A., Bai, Y., Nedjati-Gilani, S., Seunarine, K. K., Hall, M. G., Parker, G. J., Camino, D. C. Alexander (2006) Open-Source Diffusion-MRI Reconstruction and Processing. In 14th scientific meeting of the international society for magnetic resonance in medicine, (pp. 2759) Seattle.Google Scholar
  10. Corbetta, M., & Shulman, G. L. (1998). Human cortical mechanisms of visual attention during orienting and search. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 353(1373), 1353–1362.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Ganos, C., Kassavetis, P., Erro, R., Edwards, M. J., Rothwell, J., & Bhatia, K. P. (2014). The role of the cerebellum in the pathogenesis of cortical myoclonus. Movement Disorders: Official Journal of the Movement Disorder Society, 29(4), 437–443.CrossRefGoogle Scholar
  12. Gauthier, I., Tarr, M. J., Anderson, A. W., Skudlarski, P., & Gore, J. C. (1999). Activation of the middle fusiform 'face area' increases with expertise in recognizing novel objects. Nature Neuroscience, 2(6), 568–573.CrossRefPubMedGoogle Scholar
  13. Greicius, M. D., Srivastava, G., Reiss, A. L., & Menon, V. (2004). Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 101(13), 4637–4642.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Heywood, C. A., Gadotti, A., & Cowey, A. (1992). Cortical area V4 and its role in the perception of color. The Journal of Neuroscience, 12(10), 4056–4065.PubMedGoogle Scholar
  15. Huang, Y. Z., Lai, S. C., Lu, C. S., Weng, Y. H., Chuang, W. L., & Chen, R. S. (2008). Abnormal cortical excitability with preserved brainstem and spinal reflexes in sialidosis type I. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 119(5), 1042–1050.CrossRefGoogle Scholar
  16. Lai, S. C., Chen, R. S., Wu Chou, Y. H., Chang, H. C., Kao, L. Y., Huang, Y. Z., et al. (2009). A longitudinal study of Taiwanese sialidosis type 1: an insight into the concept of cherry-red spot myoclonus syndrome. European Journal of Neurology: The Official Journal of the European Federation of Neurological Societies, 16(8), 912–919.CrossRefGoogle Scholar
  17. Nemanic, S., Alvarado, M. C., & Bachevalier, J. (2004). The hippocampal/parahippocampal regions and recognition memory: insights from visual paired comparison versus object-delayed nonmatching in monkeys. The Journal of Neuroscience, 24(8), 2013–2026.CrossRefPubMedGoogle Scholar
  18. Nichols, T. E., & Holmes, A. P. (2002). Nonparametric permutation tests for functional neuroimaging: a primer with examples. Human Brain Mapping, 15(1), 1–25.CrossRefPubMedGoogle Scholar
  19. Palmeri, S., Villanova, M., Malandrini, A., van Diggelen, O. P., Huijmans, J. G., Ceuterick, C., et al. (2000). Type I sialidosis: a clinical, biochemical and neuroradiological study. European Neurology, 43(2), 88–94.CrossRefPubMedGoogle Scholar
  20. Parise, M., Kubo, T. T., Doring, T. M., Tukamoto, G., Vincent, M., & Gasparetto, E. L. (2014). Cuneus and fusiform cortices thickness is reduced in trigeminal neuralgia. The Journal of Headache and Pain, 15, 17.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Pattison, S., Pankarican, M., Rupar, C. A., Graham, F. L., & Igdoura, S. A. (2004). Five novel mutations in the lysosomal sialidase gene (NEU1) in type II sialidosis patients and assessment of their impact on enzyme activity and intracellular targeting using adenovirus-mediated expression. Human Mutation, 23(1), 32–39.CrossRefPubMedGoogle Scholar
  22. Pierpaoli, C., & Basser, P. J. (1996). Toward a quantitative assessment of diffusion anisotropy. Magnetic Resonance in Medicine, 36(6), 893–906.CrossRefPubMedGoogle Scholar
  23. Sekijima, Y., Nakamura, K., Kishida, D., Narita, A., Adachi, K., Ohno, K., et al. (2013). Clinical and serial MRI findings of a sialidosis type I patient with a novel missense mutation in the NEU1 gene. Internal Medicine, 52(1), 119–124.CrossRefPubMedGoogle Scholar
  24. Seyrantepe, V., Poupetova, H., Froissart, R., Zabot, M. T., Maire, I., & Pshezhetsky, A. V. (2003). Molecular pathology of NEU1 gene in sialidosis. Human Mutation, 22(5), 343–352.CrossRefPubMedGoogle Scholar
  25. Slotnick, S. D., & White, R. C. (2013). The fusiform face area responds equivalently to faces and abstract shapes in the left and central visual fields. NeuroImage, 83, 408–417.CrossRefPubMedGoogle Scholar
  26. Smith, S. M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T. E., Mackay, C. E., et al. (2006). Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage, 31(4), 1487–1505.CrossRefPubMedGoogle Scholar
  27. Song, X. W., Dong, Z. Y., Long, X. Y., Li, S. F., Zuo, X. N., Zhu, C. Z., et al. (2011). REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PloS One, 6(9), e25031.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Traff, J., Petrovic, P., & Ingvar, M. (2000). Thalamic activation in photic myoclonus. Acta Neurologica Scandinavica, 101(5), 339–343.CrossRefPubMedGoogle Scholar
  29. van den Heuvel, M. P., & Hulshoff Pol, H. E. (2010). Exploring the brain network: a review on resting-state fMRI functional connectivity. European Neuropsychopharmacology: the Journal of the European College of Neuropsychopharmacology, 20(8), 519–534.CrossRefGoogle Scholar
  30. Ventre-Dominey, J., Bailly, A., Lavenne, F., Lebars, D., Mollion, H., Costes, N., et al. (2005). Double dissociation in neural correlates of visual working memory: a PET study. Brain Research. Cognitive Brain Research, 25(3), 747–759.CrossRefPubMedGoogle Scholar
  31. Wakana, S., Jiang, H., Nagae-Poetscher, L. M., van Zijl, P. C., & Mori, S. (2004). Fiber tract-based atlas of human white matter anatomy. Radiology, 230(1), 77–87.CrossRefPubMedGoogle Scholar
  32. Wang, J., Wai, Y., Weng, Y., Ng, K., Huang, Y. Z., Ying, L., et al. (2009). Functional MRI in the assessment of cortical activation during gait-related imaginary tasks. Journal of Neural Transmission, 116(9), 1087–1092.CrossRefPubMedGoogle Scholar
  33. Wang, J. J., Lin, W. Y., Lu, C. S., Weng, Y. H., Ng, S. H., Wang, C. H., et al. (2011). Parkinson disease: diagnostic utility of diffusion kurtosis imaging. Radiology, 261(1), 210–217.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Chin-Song Lu
    • 1
    • 2
    • 3
  • Shu-Hang Ng
    • 4
  • Szu-Chia Lai
    • 1
    • 2
  • Ling-Yuh Kao
    • 7
    • 8
  • Laura Liu
    • 7
    • 8
  • Wey-Yil Lin
    • 1
    • 2
  • Yi-Ming Wu
    • 4
    • 5
  • Yao-Liang Chen
    • 4
    • 5
  • Jiun-Jie Wang
    • 2
    • 4
    • 6
    • 9
  1. 1.Division of Movement Disorders, Department of NeurologyChang Gung Memorial HospitalTaoyuanTaiwan
  2. 2.Neuroscience Research CenterChang Gung Memorial HospitalTaoyuanTaiwan
  3. 3.School of Traditional Chinese MedicineChang Gung UniversityTaoyuanTaiwan
  4. 4.Department of Medical Imaging and InterventionChang Gung Memorial HospitalLinkouTaiwan
  5. 5.Department of Medical Imaging and InterventionChang Gung Memorial HospitalKeelungTaiwan
  6. 6.Department of Medical Imaging and Radiological SciencesChang Gung UniversityTaoYuan countyTaiwan
  7. 7.Department of OphthalmologyChang Gung Memorial Hospital, Linkou Medical CenterTaoyuanTaiwan
  8. 8.College of MedicineChang Gung UniversityTaoyuanTaiwan
  9. 9.Medical Imaging Research Center, Institute for Radiological ResearchChang Gung University, Chang Gung Memorial HospitalTaoyuanTaiwan

Personalised recommendations