Skip to main content
Log in

The functional connectivity in the motor loop of human basal ganglia

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Basal ganglia interact in a complex way which is still not completely understood. The model generally used to explain basal ganglia interactions is based on experimental data in animals, but its validation in humans has been hampered by methodological restrictions. The time-relationship (partial correlation) of the fluctuations of the blood-oxygen-level-dependent signals recorded in the main basal ganglia was used here (32 healthy volunteers; 18–72 years of age; 16 males and 16 females) to test whether the interaction of the main basal ganglia in humans follows the pattern of functional connectivity in animals. Data showed that most basal ganglia have a functional connectivity which is compatible with that of the established closed-loop model. The strength of the connectivity of some basal ganglia changed with finger motion, suggesting that the functional interactions between basal ganglia are quickly restructured by the motor tasks. The present study with the motor cortico-BG loop centers supports the circling dynamic of the basal ganglia model in humans, showing that motor tasks may change the functional connectivity of these centers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afsharpour, S. (1985). Topographical projections of the cerebral cortex to the subthalamic nucleus. The Journal of Comparative Neurology, 236(1), 14–28.

    Article  CAS  PubMed  Google Scholar 

  • Albin, R. L., Young, A. B., & Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neurosciences, 12(10), 366–375.

    Article  CAS  PubMed  Google Scholar 

  • Alexander, G. E., & Crutcher, M. D. (1990). Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends in Neurosciences, 13(7), 266–271.

    Article  CAS  PubMed  Google Scholar 

  • Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381.

    Article  CAS  PubMed  Google Scholar 

  • Arthurs, O. J., & Boniface, S. (2002). How well do we understand the neural origins of the fMRI BOLD signal? Trends in Neurosciences, 25(1), 27–31.

    Article  CAS  PubMed  Google Scholar 

  • Baudrexel, S., Witte, T., Seifried, C., von Wegner, F., Beissner, F., Klein, J. C., et al. (2011). Resting state fMRI reveals increased subthalamic nucleus-motor cortex connectivity in Parkinson’s disease. NeuroImage, 55(4), 1728–1738.

    Article  PubMed  Google Scholar 

  • Baufreton, J., Kirkham, E., Atherton, J. F., Menard, A., Magill, P. J., Bolam, J. P., et al. (2009). Sparse but selective and potent synaptic transmission from the Globus pallidus to the subthalamic nucleus. Journal of Neurophysiology, 102(1), 532–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brunenberg, E. J., Moeskops, P., Backes, W. H., Pollo, C., Cammoun, L., Vilanova, A., et al. (2012). Structural and resting state functional connectivity of the subthalamic nucleus: identification of motor STN parts and the hyperdirect pathway. PloS One, 7(6), e39061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buckner, R. L., Krienen, F. M., & Yeo, B. T. (2013). Opportunities and limitations of intrinsic functional connectivity MRI. Nature Neuroscience, 16(7), 832–837.

    Article  PubMed  Google Scholar 

  • Chastan, N., Westby, G. W., Yelnik, J., Bardinet, E., Do, M. C., Agid, Y., et al. (2009). Effects of nigral stimulation on locomotion and postural stability in patients with Parkinson’s disease. Brain, 132(Pt 1), 172–184.

    CAS  PubMed  Google Scholar 

  • D’Esposito, M., Deouell, L. Y., & Gazzaley, A. (2003). Alterations in the BOLD fMRI signal with ageing and disease: a challenge for neuroimaging. Nature Reviews. Neuroscience, 4(11), 863–872.

    Article  PubMed  Google Scholar 

  • DeLong, M. R. (1971). Activity of pallidal neurons during movement. Journal of Neurophysiology, 34(3), 414–427.

    CAS  PubMed  Google Scholar 

  • DeLong, M. R. (1990). Primate models of movement disorders of basal ganglia origin. Trends in Neurosciences, 13(7), 281–285.

    Article  CAS  PubMed  Google Scholar 

  • Deniau, J. M., Kitai, S. T., Donoghue, J. P., & Grofova, I. (1982). Neuronal interactions in the substantia nigra pars reticulata through axon collaterals of the projection neurons. An electrophysiological and morphological study. Experimental Brain Research, 47(1), 105–113.

    Article  CAS  PubMed  Google Scholar 

  • Dervan, A. G., Meshul, C. K., Beales, M., McBean, G. J., Moore, C., Totterdell, S., et al. (2004). Astroglial plasticity and glutamate function in a chronic mouse model of Parkinson’s disease. Experimental Neurology, 190(1), 145–156.

    Article  CAS  PubMed  Google Scholar 

  • Di Martino, A., Scheres, A., Margulies, D. S., Kelly, A. M., Uddin, L. Q., Shehzad, Z., et al. (2008). Functional connectivity of human striatum: a resting state FMRI study. Cerebral Cortex, 18(12), 2735–2747.

    Article  PubMed  Google Scholar 

  • Evarts, E. V. (1969). Activity of piramidal tract neurons during postural fixation. Journal of Neurophysiology, 32, 375–385.

    CAS  PubMed  Google Scholar 

  • Fair, D. A., Schlaggar, B. L., Cohen, A. L., Miezin, F. M., Dosenbach, N. U., Wenger, K. K., et al. (2007). A method for using blocked and event-related fMRI data to study "resting state" functional connectivity. NeuroImage, 35(1), 396–405.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences of the United States of America, 102(27), 9673–9678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox, M. D., Snyder, A. Z., Vincent, J. L., & Raichle, M. E. (2007). Intrinsic fluctuations within cortical systems account for intertrial variability in human behavior. Neuron, 56(1), 171–184.

    Article  CAS  PubMed  Google Scholar 

  • Fox, P. T., & Raichle, M. E. (1986). Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human sujacts. Proceedings of the National Academy of Sciences of the United States of America, 83, 1140–1144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox, P. T., Raichle, M. E., Mintun, M. A., & Dence, C. (1988). Nonoxidative glucose consumption during focal physiologic neural activity. Science, 241, 462–464.

    Article  CAS  PubMed  Google Scholar 

  • Francois-Brosseau, F. E., Martinu, K., Strafella, A. P., Petrides, M., Simard, F., & Monchi, O. (2009). Basal ganglia and frontal involvement in self-generated and externally-triggered finger movements in the dominant and non-dominant hand. The European Journal of Neuroscience, 29(6), 1277–1286.

    Article  PubMed  Google Scholar 

  • Galvan, A., Hu, X., Smith, Y., & Wichmann, T. (2010). Localization and function of GABA transporters in the Globus pallidus of parkinsonian monkeys. Experimental Neurology, 223(2), 505–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Georgopoulos, A. P., Ashe, J., Smyrnis, N., & Taira, M. (1992). The motor cortex and the coding of force. Science, 256(5064), 1692–1695.

    Article  CAS  PubMed  Google Scholar 

  • Gittis, A. H., Berke, J. D., Bevan, M. D., Chan, C. S., Mallet, N., Morrow, M. M., et al. (2014). New roles for the external Globus pallidus in basal ganglia circuits and behavior. The Journal of Neuroscience, 34(46), 15178–15183.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gopinath, K., Ringe, W., Goyal, A., Carter, K., Dinse, H. R., Haley, R., et al. (2011). Striatal functional connectivity networks are modulated by fMRI resting state conditions. NeuroImage, 54(1), 380–388.

    Article  PubMed  Google Scholar 

  • Greene, D. J., Laumann, T. O., Dubis, J. W., Ihnen, S. K., Neta, M., Power, J. D., et al. (2014). Developmental changes in the organization of functional connections between the basal ganglia and cerebral cortex. The Journal of Neuroscience, 34(17), 5842–5854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 253–258.

    Article  CAS  PubMed  Google Scholar 

  • Haber, S. N. (2003). The primate basal ganglia: parallel and integrative networks. Journal of Chemical Neuroanatomy, 26(4), 317–330.

    Article  PubMed  Google Scholar 

  • Hazrati, L. N., Parent, A., Mitchell, S., & Haber, S. N. (1990). Evidence for interconnections between the two segments of the Globus pallidus in primates: a PHA-L anterograde tracing study. Brain Research, 533(1), 171–175.

    Article  CAS  PubMed  Google Scholar 

  • Hoover, J. E., & Strick, P. L. (1993). Multiple output channels in the basal ganglia. Science, 259(5096), 819–821.

    Article  CAS  PubMed  Google Scholar 

  • Huguenard, J. R., & McCormick, D. A. (2007). Thalamic synchrony and dynamic regulation of global forebrain oscillations. Trends in Neurosciences, 30(7), 350–356.

    Article  CAS  PubMed  Google Scholar 

  • Jo, H. J., Gotts, S. J., Reynolds, R. C., Bandettini, P. A., Martin, A., Cox, R. W., et al. (2013). Effective preprocessing procedures virtually eliminate distance-dependent motion artifacts in resting state FMRI. Journal of Applied Mathematics, 1, 1–9.

    Article  Google Scholar 

  • Kalaska, J. F., Cohen, D. A., Hyde, M. L., & Prud’homme, M. (1989). A comparison of movement direction-related versus load direction-related activity in primate motor cortex, using a two-dimensional reaching task. The Journal of Neuroscience, 9(6), 2080–2102.

    CAS  PubMed  Google Scholar 

  • Kaneda, K., Tachibana, Y., Imanishi, M., Kita, H., Shigemoto, R., Nambu, A., et al. (2005). Down-regulation of metabotropic glutamate receptor 1alpha in Globus pallidus and substantia nigra of parkinsonian monkeys. The European Journal of Neuroscience, 22(12), 3241–3254.

    Article  CAS  PubMed  Google Scholar 

  • Kim, S. G., & Ugurbil, K. (1997). Comparison of blood oxygenation and cerebral blood flow effects in fMRI: estimation of relative oxygen consumption change. Magnetic Resonance in Medicine, 38(1), 59–65.

    Article  CAS  PubMed  Google Scholar 

  • Kitai, S. T., & Deniau, J. M. (1981). Cortical inputs to the subthalamus: intracellular analysis. Brain Research, 214(2), 411–415.

    Article  CAS  PubMed  Google Scholar 

  • Kliem, M. A., Maidment, N. T., Ackerson, L. C., Chen, S., Smith, Y., & Wichmann, T. (2007). Activation of nigral and pallidal dopamine D1-like receptors modulates basal ganglia outflow in monkeys. Journal of Neurophysiology, 98(3), 1489–1500.

    Article  CAS  PubMed  Google Scholar 

  • Kliem, M. A., Pare, J. F., Khan, Z. U., Wichmann, T., & Smith, Y. (2010). Ultrastructural localization and function of dopamine D1-like receptors in the substantia nigra pars reticulata and the internal segment of the Globus pallidus of parkinsonian monkeys. The European Journal of Neuroscience, 31(5), 836–851.

    Article  PubMed  PubMed Central  Google Scholar 

  • Klimesch, W. (1999). EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Research. Brain Research Reviews, 29(2–3), 169–195.

    Article  CAS  PubMed  Google Scholar 

  • Klimesch, W., Sauseng, P., & Hanslmayr, S. (2007). EEG alpha oscillations: the inhibition-timing hypothesis. Brain Research Reviews, 53(1), 63–88.

    Article  PubMed  Google Scholar 

  • Kunzle, H., & Akert, K. (1977). Efferent connections of cortical, area 8 (frontal eye field) in Macaca fascicularis. A reinvestigation using the autoradiographic technique. The Journal of Comparative Neurology, 173(1), 147–164.

    Article  CAS  PubMed  Google Scholar 

  • Lafreniere-Roula, M., Kim, E., Hutchison, W. D., Lozano, A. M., Hodaie, M., & Dostrovsky, J. O. (2010). High-frequency microstimulation in human Globus pallidus and substantia nigra. Experimental Brain Research, 205(2), 251–261.

    Article  PubMed  Google Scholar 

  • Lehericy, S., Benali, H., Van de Moortele, P. F., Pelegrini-Issac, M., Waechter, T., Ugurbil, K., et al. (2005). Distinct basal ganglia territories are engaged in early and advanced motor sequence learning. Proceedings of the National Academy of Sciences of the United States of America, 102(35), 12566–12571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenglet, C., Abosch, A., Yacoub, E., De Martino, F., Sapiro, G., & Harel, N. (2012). Comprehensive in vivo mapping of the human basal ganglia and thalamic connectome in individuals using 7 T MRI. PloS One, 7(1), e29153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Logothetis, N. K., & Wandell, B. A. (2004). Interpreting the BOLD signal. Annual Review of Physiology, 66, 735–769.

    Article  CAS  PubMed  Google Scholar 

  • Mailly, P., Charpier, S., Menetrey, A., & Deniau, J. M. (2003). Three-dimensional organization of the recurrent axon collateral network of the substantia nigra pars reticulata neurons in the rat. The Journal of Neuroscience, 23(12), 5247–5257.

    CAS  PubMed  Google Scholar 

  • Marchand, W. R., Lee, J. N., Suchy, Y., Garn, C., Johnson, S., Wood, N., et al. (2011). Age-related changes of the functional architecture of the cortico-basal ganglia circuitry during motor task execution. NeuroImage, 55(1), 194–203.

    Article  PubMed  Google Scholar 

  • Mastro, K. J., Bouchard, R. S., Holt, H. A., & Gittis, A. H. (2014). Transgenic mouse lines subdivide external segment of the Globus pallidus (GPe) neurons and reveal distinct GPe output pathways. The Journal of Neuroscience, 34(6), 2087–2099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McHaffie, J. G., Stanford, T. R., Stein, B. E., Coizet, V., & Redgrave, P. (2005). Subcortical loops through the basal ganglia. Trends in Neurosciences, 28(8), 401–407.

    Article  CAS  PubMed  Google Scholar 

  • Monchi, O., Petrides, M., Strafella, A. P., Worsley, K. J., & Doyon, J. (2006). Functional role of the basal ganglia in the planning and execution of actions. Annals of Neurology, 59(2), 257–264.

    Article  PubMed  Google Scholar 

  • Mulder, M. J., Boekel, W., Ratcliff, R., & Forstmann, B. U. (2013). Cortico-subthalamic connection predicts individual differences in value-driven choice bias. Brain Structure & Function

  • Nakanishi, H., Kita, H., & Kitai, S. T. (1991). Intracellular study of rat entopeduncular nucleus neurons in an in vitro slice preparation: response to subthalamic stimulation. Brain Research, 549(2), 285–291.

    Article  CAS  PubMed  Google Scholar 

  • Nambu, A. (2011). Somatotopic organization of the primate basal ganglia. Frontiers in Neuroanatomy, 5, 26.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nambu, A., & Llinas, R. (1994). Electrophysiology of Globus pallidus neurons in vitro. Journal of Neurophysiology, 72(3), 1127–1139.

    CAS  PubMed  Google Scholar 

  • Obeso, J. A., Marin, C., Rodriguez-Oroz, C., Blesa, J., Benitez-Temino, B., Mena-Segovia, J., et al. (2008a). The basal ganglia in Parkinson’s disease: current concepts and unexplained observations. Ann Neurol, 64(Suppl 2), S30–S46.

    PubMed  Google Scholar 

  • Obeso, J. A., Rodriguez-Oroz, M. C., Benitez-Temino, B., Blesa, F. J., Guridi, J., Marin, C., et al. (2008b). Functional organization of the basal ganglia: therapeutic implications for Parkinson’s disease. Mov Disord, 23(Suppl 3), S548–S559.

    Article  PubMed  Google Scholar 

  • Obeso, J. A., Rodriguez-Oroz, M. C., Lanciego, J. L., & Rodriguez Diaz, M. (2004). How does Parkinson’s disease begin? The role of compensatory mechanisms. Trends in Neurosciences, 27(3), 125–127 author reply 127-128.

    Article  CAS  PubMed  Google Scholar 

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97–113.

    Article  CAS  PubMed  Google Scholar 

  • Parent, A. (1990). Extrinsic connections of the basal ganglia. Trends in Neurosciences, 13(7), 254–258.

    Article  CAS  PubMed  Google Scholar 

  • Parent, A., & Hazrati, L. N. (1995a). Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Research. Brain Research Reviews, 20(1), 91–127.

    Article  CAS  PubMed  Google Scholar 

  • Parent, A., & Hazrati, L. N. (1995b). Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Research. Brain Research Reviews, 20(1), 128–154.

    Article  CAS  PubMed  Google Scholar 

  • Parent, M., Levesque, M., & Parent, A. (1999). The pallidofugal projection system in primates: evidence for neurons branching ipsilaterally and contralaterally to the thalamus and brainstem. Journal of Chemical Neuroanatomy, 16(3), 153–165.

    Article  CAS  PubMed  Google Scholar 

  • Penney Jr., J. B., & Young, A. B. (1986). Striatal inhomogeneities and basal ganglia function. Movement Disorders, 1(1), 3–15.

    Article  PubMed  Google Scholar 

  • Postuma, R. B., & Dagher, A. (2006). Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. Cerebral Cortex, 16(10), 1508–1521.

    Article  PubMed  Google Scholar 

  • Power, J. D., Mitra, A., Laumann, T. O., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2014). Methods to detect, characterize, and remove motion artifact in resting state fMRI. NeuroImage, 84, 320–341.

    Article  PubMed  Google Scholar 

  • Puce, A., Constable, R. T., Luby, M. L., McCarthy, G., Nobre, A. C., Spencer, D. D., et al. (1995). Functional magnetic resonance imaging of sensory and motor cortex: comparison with electrophysiological localization. Journal of Neurosurgery, 83(2), 262–270.

    Article  CAS  PubMed  Google Scholar 

  • Raichle, M. E. (1998). Behind the scenes of functional brain imaging: a historical and physiological perspective. Proceedings of the National Academy of Sciences of the United States of America, 95(3), 765–772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raichle, M. E., & Mintun, M. A. (2006). Brain work and brain imaging. Annual Review of Neuroscience, 29, 449–476.

    Article  CAS  PubMed  Google Scholar 

  • Redgrave, P., Marrow, L., & Dean, P. (1992). Topographical organization of the nigrotectal projection in rat: evidence for segregated channels. Neuroscience, 50(3), 571–595.

    Article  CAS  PubMed  Google Scholar 

  • Rinvik, E., & Ottersen, O. P. (1993). Terminals of subthalamonigral fibres are enriched with glutamate-like immunoreactivity: an electron microscopic, immunogold analysis in the cat. Journal of Chemical Neuroanatomy, 6(1), 19–30.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, S., Basso, G., Soldati, N., Sailer, U., Jovicich, J., Bruzzone, L., et al. (2009). A resting state network in the motor control circuit of the basal ganglia. BMC Neuroscience, 10, 137.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Oroz, M. C., Lopez-Azcarate, J., Garcia-Garcia, D., Alegre, M., Toledo, J., Valencia, M., et al. (2013). Involvement of the subthalamic nucleus in impulse control disorders associated with Parkinson’s disease. Brain, 134(Pt 1), 36–49.

    Google Scholar 

  • Rodriguez-Sabate, C., Llanos, C., Morales, I., Garcia-Alvarez, R., Sabate, M., & Rodriguez, M. (2014). The functional connectivity of intralaminar thalamic nuclei in the human basal ganglia. Human Brain Mapping

  • Rodriguez-Sabate, C., Llanos, C., Morales, I., Garcia-Alvarez, R., Sabate, M., & Rodriguez, M. (2015). The functional connectivity of intralaminar thalamic nuclei in the human basal ganglia. Human Brain Mapping, 36(4), 1335–1347.

    Article  PubMed  Google Scholar 

  • Rodriguez, M., Muniz, R., Gonzalez, B., & Sabate, M. (2004). Hand movement distribution in the motor cortex: the influence of a concurrent task and motor imagery. NeuroImage, 22(4), 1480–1491.

    Article  PubMed  Google Scholar 

  • Rouzaire-Dubois, B., & Scarnati, E. (1985). Bilateral corticosubthalamic nucleus projections: an electrophysiological study in rats with chronic cerebral lesions. Neuroscience, 15(1), 69–79.

    Article  CAS  PubMed  Google Scholar 

  • Sabate, M., Llanos, C., Enriquez, E., Gonzalez, B., & Rodriguez, M. (2011). Fast modulation of alpha activity during visual processing and motor control. Neuroscience, 189, 236–249.

    Article  CAS  PubMed  Google Scholar 

  • Salamon, G., Martini, P., Ternier, F., Vibert, E., Murayama, N., & Khadr, E. (1991). Topographical study of supratentorial brain tumors. Journal of Neuroradiology, 18(2), 123–140.

    CAS  Google Scholar 

  • Sato, F., Lavallee, P., Levesque, M., & Parent, A. (2000). Single-axon tracing study of neurons of the external segment of the Globus pallidus in primate. The Journal of Comparative Neurology, 417(1), 17–31.

    Article  CAS  PubMed  Google Scholar 

  • Selemon, L. D., & Goldman-Rakic, P. S. (1985). Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. The Journal of Neuroscience, 5(3), 776–794.

    CAS  PubMed  Google Scholar 

  • Steriade, M. (2001). Impact of network activities on neuronal properties in corticothalamic systems. Journal of Neurophysiology, 86(1), 1–39.

    CAS  PubMed  Google Scholar 

  • Steriade, M., & Deschenes, M. (1984). The thalamus as a neuronal oscillator. Brain Research, 320(1), 1–63.

    Article  CAS  PubMed  Google Scholar 

  • Talairach, J., & Tournoux, P. (1993). Co-planar stereotaxic atlas of the human brain. New York: Thieme Medical Publishers, Stuttgart.

    Google Scholar 

  • Tanibuchi, I., Kitano, H., & Jinnai, K. (2009). Substantia nigra output to prefrontal cortex via thalamus in monkeys. I. Electrophysiological identification of thalamic relay neurons. Journal of Neurophysiology, 102(5), 2933–2945.

    Article  PubMed  Google Scholar 

  • Taniwaki, T., Okayama, A., Yoshiura, T., Togao, O., Nakamura, Y., Yamasaki, T., et al. (2006). Functional network of the basal ganglia and cerebellar motor loops in vivo: different activation patterns between self-initiated and externally triggered movements. NeuroImage, 31(2), 745–753.

    Article  PubMed  Google Scholar 

  • Treserras, S., Boulanouar, K., Conchou, F., Simonetta-Moreau, M., Berry, I., Celsis, P., et al. (2009). Transition from rest to movement: brain correlates revealed by functional connectivity. NeuroImage, 48(1), 207–216.

    Article  PubMed  Google Scholar 

  • Van Dijk, K. R., Hedden, T., Venkataraman, A., Evans, K. C., Lazar, S. W., & Buckner, R. L. (2010). Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization. Journal of Neurophysiology, 103(1), 297–321.

    Article  PubMed  Google Scholar 

  • Walker, R. H., Arbuthnott, G. W., & Wright, A. K. (1989). Electrophysiological and anatomical observations concerning the pallidostriatal pathway in the rat. Experimental Brain Research, 74(2), 303–310.

    Article  CAS  PubMed  Google Scholar 

  • Wichmann, T., Bergman, H., Starr, P. A., Subramanian, T., Watts, R. L., & DeLong, M. R. (1999). Comparison of MPTP-induced changes in spontaneous neuronal discharge in the internal pallidal segment and in the substantia nigra pars reticulata in primates. Experimental Brain Research, 125(4), 397–409.

    Article  CAS  PubMed  Google Scholar 

  • Windels, F., Bruet, N., Poupard, A., Urbain, N., Chouvet, G., Feuerstein, C., et al. (2000). Effects of high frequency stimulation of subthalamic nucleus on extracellular glutamate and GABA in substantia nigra and Globus pallidus in the normal rat. The European Journal of Neuroscience, 12(11), 4141–4146.

    Article  CAS  PubMed  Google Scholar 

  • Wu, T., Wang, L., Hallett, M., Chen, Y., Li, K., & Chan, P. (2011). Effective connectivity of brain networks during self-initiated movement in Parkinson’s disease. NeuroImage, 55(1), 204–215.

    Article  PubMed  Google Scholar 

  • Yousry, T. A., Schmid, U. D., Alkadhi, H., Schmidt, D., Peraud, A., Buettner, A., et al. (1997). Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain, 120(Pt 1), 141–157.

    Article  PubMed  Google Scholar 

  • Ystad, M., Hodneland, E., Adolfsdottir, S., Haasz, J., Lundervold, A. J., Eichele, T., et al. (2011). Cortico-striatal connectivity and cognition in normal aging: a combined DTI and resting state fMRI study. NeuroImage, 55(1), 24–31.

    Article  PubMed  Google Scholar 

  • Zhang, D., Snyder, A. Z., Fox, M. D., Sansbury, M. W., Shimony, J. S., & Raichle, M. E. (2008). Intrinsic functional relations between human cerebral cortex and thalamus. Journal of Neurophysiology, 100(4), 1740–1748.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, D., Snyder, A. Z., Shimony, J. S., Fox, M. D., & Raichle, M. E. (2010). Noninvasive functional and structural connectivity mapping of the human thalamocortical system. Cerebral Cortex, 20(5), 1187–1194.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Rodriguez.

Ethics declarations

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study was performed with the approval of the local Institutional Human Studies Committee. This article does not contain any studies with animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Funding

This study was funded by the Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain. (grant number PI2011/02–2).

Conflict of Interest

Authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez-Sabate, C., Sabate, M., Llanos, C. et al. The functional connectivity in the motor loop of human basal ganglia. Brain Imaging and Behavior 11, 417–429 (2017). https://doi.org/10.1007/s11682-016-9512-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-016-9512-y

Keywords

Navigation