Brain Imaging and Behavior

, Volume 11, Issue 1, pp 155–165 | Cite as

Altered resting state functional connectivity of anterior insula in young smokers

  • Yanzhi Bi
  • Kai YuanEmail author
  • Yanyan Guan
  • Jiadong Cheng
  • Yajuan Zhang
  • Yangding Li
  • Dahua Yu
  • Wei Qin
  • Jie TianEmail author
Original Research


The insula has been implicated in cognitive control and craving, all of which are critical to the clinical manifestations of nicotine dependence. However, little evidence exists about the abnormalities in resting state functional connectivity (RSFC) of the insula in young smokers, which might improve our understanding of the neural mechanisms of nicotine dependence. Due to the structural and functional heterogeneity of the insula, the RSFC patterns of both left and right anterior (AI) and posterior insula (PI) were investigated in young smokers and non-smokers. Meanwhile, the relationship was assessed between the neuroimaging findings and clinical information (pack-years, FTND, and craving) as well as cognitive control deficits measured by Stroop task performance. Compared with non-smokers, young smokers showed reduced RSFC between right AI and anterior cingulate cortex (ACC), ventromedial prefrontal cortex (VMPFC), amygdala, left dorsolateral prefrontal cortex, and dorsal striatum. Additionally, left AI showed reduced RSFC with ACC. Both left and right PI network differences were not observed between two groups. Moreover, in young smokers, FTND and incongruent errors in the Stroop task were negatively correlated with the RSFC between AI and ACC. Craving scores showed a significantly negative relationship with the RSFC strength between right AI and left VMPFC. These results provide a more thorough network-level understanding the role of insula in cigarette smoking. The findings provide new insights into the roles of AI-ACC circuit in cognitive control deficits and right AI-VMPFC circuit relevant to the craving of nicotine dependence for young smokers.


Insula Resting state functional connectivity Young smokers Cognitive control Craving 



This paper is supported by the Project for the National Key Basic Research and Development Program (973) under Grant nos. 2014CB543203, 2011CB707700, 2012CB518501, the National Natural Science Foundation of China under Grant nos. 81571751, 81571753, 61502376, 81401478, 81401488, 81271644, 81271546, 81271549, 81470816, 81471737, 81301281, the Natural Science Basic Research Plan in Shaanxi Province of China under Grant no. 2014JQ4118, and the Fundamental Research Funds for the Central Universities under the Grant nos. JB151204, JB121405, the Natural Science Foundation of Inner Mongolia under Grant no. 2014BS0610, the Innovation Fund Project of Inner Mongolia University of Science and Technology Nos. 2015QNGG03, 2014QDL002, General Financial Grant the China Post- doctoral Science Foundation under Grant no. 2014 M552416.

Compliance with ethical standards

Conflict of interest

Yanzhi Bi, Kai Yuan, Yanyan Guan, Jiadong Cheng, Yajuan Zhang, Yangding Li, Dahua Yu, Wei Qin, Jie Tian declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Ethical statements

Informed consent was obtained from all individual participants included in the study.


  1. Amiaz, R., Levy, D., Vainiger, D., Grunhaus, L., & Zangen, A. (2009). Repeated high-frequency transcranial magnetic stimulation over the dorsolateral prefrontal cortex reduces cigarette craving and consumption. Addiction, 104(4), 653–660.CrossRefPubMedGoogle Scholar
  2. Azizian, A., Nestor, L. J., Payer, D., Monterosso, J. R., Brody, A. L., & London, E. D. (2010). Smoking reduces conflict-related anterior cingulate activity in abstinent cigarette smokers performing a stroop task. Neuropsychopharmacology, 35(3), 775–782.CrossRefPubMedGoogle Scholar
  3. Baur, V., Hänggi, J., Langer, N., & Jäncke, L. (2013). Resting-state functional and structural connectivity within an insula–amygdala route specifically index state and trait anxiety. Biological Psychiatry, 73(1), 85–92.CrossRefPubMedGoogle Scholar
  4. Biswal, B., Zerrin Yetkin, F., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar mri. Magnetic Resonance in Medicine, 34(4), 537–541.CrossRefPubMedGoogle Scholar
  5. Brody, A. L. (2006). Functional brain imaging of tobacco use and dependence. Journal of Psychiatric Research, 40(5), 404–418.CrossRefPubMedGoogle Scholar
  6. Brody, A. L., Mandelkern, M. A., London, E. D., Childress, A. R., Lee, G. S., Bota, R. G., et al. (2002). Brain metabolic changes during cigarette craving. Archives of General Psychiatry, 59(12), 1162–1172.CrossRefPubMedGoogle Scholar
  7. Brody, A. L., Mandelkern, M. A., Olmstead, R. E., Jou, J., Tiongson, E., Allen, V., et al. (2007). Neural substrates of resisting craving during cigarette cue exposure. Biological Psychiatry, 62(6), 642–651.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Cai, C., Yuan, K., Yin, J., Feng, D., Bi, Y., Li, Y., et al. (2015). Striatum morphometry is associated with cognitive control deficits and symptom severity in internet gaming disorder. Brain Imaging and Behavior, 1-9. doi: 10.1007/s11682-015-9358-8.
  9. Carroll, A. J., Sutherland, M. T., Salmeron, B. J., Ross, T. J., & Stein, E. A. (2014). Greater externalizing personality traits predict less error-related insula and anterior cingulate cortex activity in acutely abstinent cigarette smokers. Addiction Biology, 20(2), 377–389.CrossRefGoogle Scholar
  10. Chang, L. J., Yarkoni, T., Khaw, M. W., & Sanfey, A. G. (2012). Decoding the role of the insula in human cognition: functional parcellation and large-scale reverse inference. Cerebral Cortex, 23(3), 739–749. doi: 10.1093/cercor/bhs065.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Changeux, J.-P. (2010). Nicotine addiction and nicotinic receptors: lessons from genetically modified mice. Nature Reviews Neuroscience, 11(6), 389–401.CrossRefPubMedGoogle Scholar
  12. Chase, H. W., Eickhoff, S. B., Laird, A. R., & Hogarth, L. (2011). The neural basis of drug stimulus processing and craving: an activation likelihood estimation meta-analysis. Biological Psychiatry, 70(8), 785–793.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Chikama, M., McFarland, N. R., Amaral, D. G., & Haber, S. N. (1997). Insular cortical projections to functional regions of the striatum correlate with cortical cytoarchitectonic organization in the primate. The Journal of Neuroscience, 17(24), 9686–9705.PubMedGoogle Scholar
  14. Claus, E. D., Blaine, S. K., Filbey, F. M., Mayer, A. R., & Hutchison, K. E. (2013). Association between nicotine dependence severity, BOLD response to smoking cues, and functional connectivity. Neuropsychopharmacology, 38(12), 2363–2372.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Clewett, D., Luo, S., Hsu, E., Ainslie, G., Mather, M., & Monterosso, J. (2014). Increased functional coupling between the left fronto-parietal network and anterior insula predicts steeper delay discounting in smokers. Human Brain Mapping, 35(8), 3774–3787.CrossRefPubMedGoogle Scholar
  16. Craig, A. D. (2002). How do you feel? Interoception: the sense of the physiological condition of the body. Nature Reviews Neuroscience, 3(8), 655–666.CrossRefPubMedGoogle Scholar
  17. Deen, B., Pitskel, N. B., & Pelphrey, K. A. (2011). Three systems of insular functional connectivity identified with cluster analysis. Cerebral Cortex, 21(7), 1498–1506.CrossRefPubMedGoogle Scholar
  18. Dosenbach, N. U., Fair, D. A., Miezin, F. M., Cohen, A. L., Wenger, K. K., Dosenbach, R. A., et al. (2007). Distinct brain networks for adaptive and stable task control in humans. Proceedings of the National Academy of Sciences, 104(26), 11073–11078.CrossRefGoogle Scholar
  19. Due, D. L., Huettel, S. A., Hall, W. G., & Rubin, D. C. (2014). Activation in mesolimbic and visuospatial neural circuits elicited by smoking cues: evidence from functional magnetic resonance imaging. The American Journal of Psychiatry, 159(6), 954–960.CrossRefGoogle Scholar
  20. Engelmann, J. M., Versace, F., Robinson, J. D., Minnix, J. A., Lam, C. Y., Cui, Y., et al. (2012). Neural substrates of smoking cue reactivity: a meta-analysis of fMRI studies. NeuroImage, 60(1), 252–262.CrossRefPubMedGoogle Scholar
  21. Everitt, B. J., Belin, D., Economidou, D., Pelloux, Y., Dalley, J. W., & Robbins, T. W. (2008). Neural mechanisms underlying the vulnerability to develop compulsive drug-seeking habits and addiction. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1507), 3125–3135.CrossRefGoogle Scholar
  22. Feng, D., Yuan, K., Li, Y., Cai, C., Yin, J., Bi, Y., Cheng, J., Guan, Y., Shi, S., Yu, D., Jin, C., Lu, X., Qin, W., & Tian, J. (2015). Intra-regional and inter-regional abnormalities and cognitive control deficits in young adult smokers. Brain Imaging and Behavior. doi: 10.1007/s11682-015-9427-z.
  23. Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8(9), 700–711.CrossRefPubMedGoogle Scholar
  24. Franklin, T. R., Wang, J., Sciortino, N., Harper, D., Li, Y., Ehrman, R., et al. (2007). Limbic activation to cigarette smoking cues independent of nicotine withdrawal: a perfusion fMRI study. Neuropsychopharmacology, 32(11), 2301–2309.CrossRefPubMedGoogle Scholar
  25. Gallinat, J., Meisenzahl, E., Jacobsen, L. K., Kalus, P., Bierbrauer, J., Kienast, T., et al. (2006). Smoking and structural brain deficits: a volumetric MR investigation. European Journal of Neuroscience, 24(6), 1744–1750.CrossRefPubMedGoogle Scholar
  26. Gu, X., Liu, X., Van Dam, N. T., Hof, P. R., & Fan, J. (2013). Cognition–emotion integration in the anterior insular cortex. Cerebral Cortex, 23(1), 20–27.CrossRefPubMedGoogle Scholar
  27. Hanlon, C. A., Owens, M. M., Joseph, J. E., Zhu, X., George, M. S., Brady, K. T., et al. (2014). Lower subcortical gray matter volume in both younger smokers and established smokers relative to non-smokers. Addiction biology. doi: 10.1111/adb.12171.
  28. Hayashi, T., Ko, J. H., Strafella, A. P., & Dagher, A. (2013). Dorsolateral prefrontal and orbitofrontal cortex interactions during self-control of cigarette craving. Proceedings of the National Academy of Sciences, 110(11), 4422–4427.CrossRefGoogle Scholar
  29. Heatherton, T. F., Kozlowski, L. T., Frecker, R. C., & FAGERSTROM, K. O. (1991). The fagerström test for nicotine dependence: a revision of the fagerstrom tolerance questionnaire. British Journal of Addiction, 86(9), 1119–1127.CrossRefPubMedGoogle Scholar
  30. Janes, A. C., Pizzagalli, D. A., Richardt, S., Chuzi, S., Pachas, G., Culhane, M. A., et al. (2010). Brain reactivity to smoking cues prior to smoking cessation predicts ability to maintain tobacco abstinence. Biological Psychiatry, 67(8), 722–729.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kelly, C., Toro, R., Di Martino, A., Cox, C. L., Bellec, P., Castellanos, F. X., et al. (2012). A convergent functional architecture of the insula emerges across imaging modalities. NeuroImage, 61(4), 1129–1142.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kerns, J. G., Cohen, J. D., MacDonald, A. W., Cho, R. Y., Stenger, V. A., & Carter, C. S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303(5660), 1023–1026.CrossRefPubMedGoogle Scholar
  33. Kober, H., Mende-Siedlecki, P., Kross, E. F., Weber, J., Mischel, W., Hart, C. L., et al. (2010). Prefrontal–striatal pathway underlies cognitive regulation of craving. Proceedings of the National Academy of Sciences, 107(33), 14811–14816.CrossRefGoogle Scholar
  34. Koob, G. F., & Volkow, N. D. (2010). Neurocircuitry of addiction. Neuropsychopharmacology, 35(1), 217–238.CrossRefPubMedGoogle Scholar
  35. Larson-Prior, L. J., Zempel, J. M., Nolan, T. S., Prior, F. W., Snyder, A. Z., & Raichle, M. E. (2009). Cortical network functional connectivity in the descent to sleep. Proceedings of the National Academy of Sciences, 106(11), 4489–4494.CrossRefGoogle Scholar
  36. Li, X., Hartwell, K. J., Borckardt, J., Prisciandaro, J. J., Saladin, M. E., Morgan, P. S., et al. (2013). Volitional reduction of anterior cingulate cortex activity produces decreased cue craving in smoking cessation: a preliminary real-time fMRI study. Addiction Biology, 18(4), 739–748.CrossRefPubMedGoogle Scholar
  37. MacDonald, A. W., Cohen, J. D., Stenger, V. A., & Carter, C. S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288(5472), 1835–1838.CrossRefPubMedGoogle Scholar
  38. Maria, M. S., Megan, M., Hartwell, K. J., Hanlon, C. A., Canterberry, M., Lematty, T., et al. (2014). Right anterior insula connectivity is important for cue-induced craving in nicotine-dependent smokers. Addiction Biology, 20(2), 407–414. doi: 10.1111/adb.12124.CrossRefPubMedCentralGoogle Scholar
  39. McBride, D., Barrett, S. P., Kelly, J. T., Aw, A., & Dagher, A. (2006). Effects of expectancy and abstinence on the neural response to smoking cues in cigarette smokers: an fMRI study. Neuropsychopharmacology, 31(12), 2728–2738.CrossRefPubMedGoogle Scholar
  40. McClernon, F. J., Hiott, F. B., Huettel, S. A., & Rose, J. E. (2005). Abstinence-induced changes in self-report craving correlate with event-related FMRI responses to smoking cues. Neuropsychopharmacology, 30(10), 1940–1947.CrossRefPubMedPubMedCentralGoogle Scholar
  41. McClernon, F. J., Hiott, F. B., Liu, J., Salley, A. N., Behm, F. M., & Rose, J. E. (2007). IMAGING STUDY: selectively reduced responses to smoking cues in amygdala following extinction-based smoking cessation: results of a preliminary functional magnetic resonance imaging study. Addiction Biology, 12(3–4), 503–512.CrossRefPubMedGoogle Scholar
  42. McClernon, F. J., Kozink, R. V., Lutz, A. M., & Rose, J. E. (2009). 24-h smoking abstinence potentiates fMRI-BOLD activation to smoking cues in cerebral cortex and dorsal striatum. Psychopharmacology, 204(1), 25–35.CrossRefPubMedGoogle Scholar
  43. Mesulam, M., & Mufson, E. J. (1982a). Insula of the old world monkey. Architectonics in the insulo-orbito-temporal component of the paralimbic brain. Journal of Comparative Neurology, 212(1), 1–22.CrossRefPubMedGoogle Scholar
  44. Mesulam, M., & Mufson, E. J. (1982b). Insula of the old world monkey. III: efferent cortical output and comments on function. Journal of Comparative Neurology, 212(1), 38–52.CrossRefPubMedGoogle Scholar
  45. Morales, A. M., Ghahremani, D., Kohno, M., Hellemann, G. S., & London, E. D. (2014). Cigarette exposure, dependence, and craving are related to insula thickness in young adult smokers. Neuropsychopharmacology, 39(8), 1816–1822.CrossRefPubMedPubMedCentralGoogle Scholar
  46. Naqvi, N. H., & Bechara, A. (2009). The hidden island of addiction: the insula. Trends in Neurosciences, 32(1), 56–67.CrossRefPubMedGoogle Scholar
  47. Naqvi, N. H., & Bechara, A. (2010). The insula and drug addiction: an interoceptive view of pleasure, urges, and decision-making. Brain Structure and Function, 214(5–6), 435–450.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Naqvi, N. H., Rudrauf, D., Damasio, H., & Bechara, A. (2007). Damage to the insula disrupts addiction to cigarette smoking. Science, 315(5811), 531–534.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Patel, A. X., Kundu, P., Rubinov, M., Jones, P. S., Vértes, P. E., Ersche, K. D., et al. (2014). A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series. NeuroImage, 95, 287–304.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Paulus, M. P., & Stein, M. B. (2006). An insular view of anxiety. Biological Psychiatry, 60(4), 383–387.CrossRefPubMedGoogle Scholar
  51. Paus, T. (2005). Mapping brain maturation and cognitive development during adolescence. Trends in Cognitive Sciences, 9(2), 60–68.CrossRefPubMedGoogle Scholar
  52. Picard, F., Sadaghiani, S., Leroy, C., Courvoisier, D. S., Maroy, R., & Bottlaender, M. (2013). High density of nicotinic receptors in the cingulo-insular network. NeuroImage, 79, 42–51.CrossRefPubMedGoogle Scholar
  53. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59(3), 2142–2154.CrossRefPubMedGoogle Scholar
  54. Pripfl, J., Tomova, L., Riecansky, I., & Lamm, C. (2014). Transcranial magnetic stimulation of the left dorsolateral prefrontal cortex decreases cue-induced nicotine craving and EEG delta power. Brain Stimulation, 7(2), 226–233.CrossRefPubMedGoogle Scholar
  55. Rose, J. E., Behm, F. M., Salley, A. N., Bates, J. E., Coleman, R. E., Hawk, T. C., et al. (2007). Regional brain activity correlates of nicotine dependence. Neuropsychopharmacology, 32(12), 2441–2452.CrossRefPubMedGoogle Scholar
  56. Rose, J. E., Behm, F. M., Westman, E. C., Mathew, R. J., London, E. D., Hawk, T. C., et al. (2014). PET studies of the influences of nicotine on neural systems in cigarette smokers. The American Journal of Psychiatry, 160(2), 323–333.CrossRefGoogle Scholar
  57. Schultz, W. (2006). Behavioral theories and the neurophysiology of reward. Annual Review of Psychology, 57, 87–115.CrossRefPubMedGoogle Scholar
  58. Stoeckel, L. E., Chai, X. J., Zhang, J., Whitfield-Gabrieli, S., & Evins, A. E. (2015). Lower gray matter density and functional connectivity in the anterior insula in smokers compared with never smokers. Addiction Biology. doi: 10.1111/adb.12262.PubMedGoogle Scholar
  59. Sutherland, M. T., McHugh, M. J., Pariyadath, V., & Stein, E. A. (2012). Resting state functional connectivity in addiction: lessons learned and a road ahead. NeuroImage, 62(4), 2281–2295.CrossRefPubMedPubMedCentralGoogle Scholar
  60. Sutherland, M. T., Carroll, A. J., Salmeron, B. J., Ross, T. J., Hong, L. E., & Stein, E. A. (2013a). Down-regulation of amygdala and insula functional circuits by varenicline and nicotine in abstinent cigarette smokers. Biological Psychiatry, 74(7), 538–546.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Sutherland, M. T., Carroll, A. J., Salmeron, B. J., Ross, T. J., & Stein, E. A. (2013b). Insula’s functional connectivity with ventromedial prefrontal cortex mediates the impact of trait alexithymia on state tobacco craving. Psychopharmacology, 228(1), 143–155.CrossRefPubMedGoogle Scholar
  62. Swan, G. E., & Lessov-Schlaggar, C. N. (2007). The effects of tobacco smoke and nicotine on cognition and the brain. Neuropsychology Review, 17(3), 259–273.CrossRefPubMedGoogle Scholar
  63. Sweitzer, M. M., Geier, C. F., Joel, D. L., McGurrin, P., Denlinger, R. L., Forbes, E. E., et al. (2014). Dissociated effects of anticipating smoking versus monetary reward in the caudate as a function of smoking abstinence. Biological Psychiatry, 76(9), 681–688.CrossRefPubMedGoogle Scholar
  64. Tiffany, S. T. (2008). Tobacco-induced neurotoxicity of adolescent cognitive development (TINACD): a proposed model for the development of impulsivity in nicotine dependence. Nicotine & Tobacco Research, 10(1), 11–25.CrossRefGoogle Scholar
  65. Tiffany, S. T., & Drobes, D. J. (1991). The development and initial validation of a questionnaire on smoking urges. British Journal of Addiction, 86(11), 1467–1476.CrossRefPubMedGoogle Scholar
  66. Volkow, N. D., Wang, G.-J., Telang, F., Fowler, J. S., Logan, J., Childress, A.-R., et al. (2006). Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. The Journal of Neuroscience, 26(24), 6583–6588.CrossRefPubMedGoogle Scholar
  67. Wang, Z., Faith, M., Patterson, F., Tang, K., Kerrin, K., Wileyto, E. P., et al. (2007). Neural substrates of abstinence-induced cigarette cravings in chronic smokers. The Journal of Neuroscience, 27(51), 14035–14040.CrossRefPubMedPubMedCentralGoogle Scholar
  68. White, H. R., Bray, B. C., Fleming, C. B., & Catalano, R. F. (2009). Transitions into and out of light and intermittent smoking during emerging adulthood. Nicotine & Tobacco Research, ntn017.Google Scholar
  69. Xing, L., Yuan, K., Bi, Y., Yin, J., Cai, C., Feng, D., et al. (2014). Reduced fiber integrity and cognitive control in adolescents with internet gaming disorder. Brain Research, 1586, 109–117.CrossRefPubMedGoogle Scholar
  70. Xu, J., Mendrek, A., Cohen, M. S., Monterosso, J., Simon, S., Jarvik, M., et al. (2006). Effect of cigarette smoking on prefrontal cortical function in nondeprived smokers performing the stroop task. Neuropsychopharmacology, 32(6), 1421–1428.CrossRefPubMedPubMedCentralGoogle Scholar
  71. Yuan, K., Qin, W., Yu, D., Bi, Y., Xing, L., Jin, C., et al. (2015). Core brain networks interactions and cognitive control in internet gaming disorder individuals in late adolescence/early adulthood. Brain Structure and Function, 1-16. doi: 10.1007/s00429-014-0982-7.
  72. Zhang, X., Salmeron, B. J., Ross, T. J., Geng, X., Yang, Y., & Stein, E. A. (2011). Factors underlying prefrontal and insula structural alterations in smokers. NeuroImage, 54(1), 42–48.CrossRefPubMedGoogle Scholar
  73. Zubieta, J.-K., Lombardi, U., Minoshima, S., Guthrie, S., Ni, L., Ohl, L. E., et al. (2001). Regional cerebral blood flow effects of nicotine in overnight abstinent smokers. Biological Psychiatry, 49(11), 906–913.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yanzhi Bi
    • 1
    • 2
  • Kai Yuan
    • 1
    • 2
    • 3
    Email author
  • Yanyan Guan
    • 1
    • 2
  • Jiadong Cheng
    • 1
    • 2
  • Yajuan Zhang
    • 1
    • 2
  • Yangding Li
    • 1
    • 2
  • Dahua Yu
    • 3
  • Wei Qin
    • 1
    • 2
  • Jie Tian
    • 1
    • 2
    • 4
    Email author
  1. 1.School of Life Science and TechnologyXidian UniversityXi’anChina
  2. 2.Engineering Research Center of Molecular and Neuro ImagingMinistry of EducationXi’anChina
  3. 3.Information Processing Laboratory, School of Information EngineeringInner Mongolia University of Science and TechnologyBaotouChina
  4. 4.Institute of AutomationChinese Academy of SciencesBeijingChina

Personalised recommendations