Advertisement

Brain Imaging and Behavior

, Volume 11, Issue 1, pp 8–16 | Cite as

Longer depressive episode duration negatively influences HF-rTMS treatment response: a cerebellar metabolic deficiency?

Original Research

Abstract

Repetitive transcranial magnetic stimulation (rTMS) is an evidence based neurostimulation modality used to treat patients with Major Depressive Disorder (MDD). In spite that the duration of current a depressive episode has been put forward as a negative predictor for clinical outcome, little is known about the underlying neurobiological mechanisms of this phenomenon. To address this important issue, in a sample of 43 melancholic stage III treatment resistant antidepressant-free refractory MDD patients, we reanalysed regional cerebral glucose metabolism (CMRglc) before high frequency (HF)-rTMS treatment, applied to the left dorsolateral prefrontal cortex (DLPFC). Besides that a lower baseline cerebellar metabolic activity indicated negative clinical response, a longer duration of the depressive episode was a negative indicator for recovery and negatively influenced cerebellar CMRglc. This exploratory 18FDG PET study is the first to demonstrate that the clinical response of HF-rTMS treatment in TRD patients may depend on the metabolic state of the cerebellum. Our observations could imply that for left DLPFC HF-rTMS non-responders other brain localisations for stimulation, more specifically the cerebellum, may be warranted.

Keywords

Treatment-resistance Major depressive disorder 18FDG PET Cerebellum HF-rTMS 

Notes

Acknowledgments

This research was supported by a grant from the Scientific Fund W. Gepts and by the Ghent University Multidisciplinary Research Partnership “The integrative neuroscience of behavioural control”. G.R.W. was supported by the Natural Science Foundation of China (Grant No. 61403312), and the Fundamental Research Funds for the Central Universities (Grant No. 2362014xk04).

Compliance with ethical standards

Conflict of interest

Author Guo-Rong Wu and Author Chris Baeken declare that they have no conflict of interest.

Informed consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975 (http://www.wma.net/en/30publications/10policies/b3/), and the applicable revisions at the time of the investigation. Informed consent was obtained from all patients for being included in the study.

References

  1. Baeken, C., De Raedt, R., Van Hove, C., Clerinx, P., De Mey, J., & Bossuyt, A. (2009). HF-rTMS treatment in medication-resistant melancholic depression: results from 18FDG-PET brain imaging. CNS Spectrums, 14(8), 439–448.CrossRefPubMedGoogle Scholar
  2. Baeken, C., Vanderhasselt, M. A., Remue, J., Herremans, S., Vanderbruggen, N., Zeeuws, D., et al. (2013). Intensive HF-rTMS treatment in refractory medication-resistant unipolar depressed patients. Journal of Affective Disorders, 151(2), 625–631.CrossRefPubMedGoogle Scholar
  3. Baeken, C., Desmyter, S., Duprat, R., De Raedt, R., Van Denabbeele, D., Tandt, H., et al. (2014). Self-directedness: an indicator for clinical response to the HF-rTMS treatment in refractory melancholic depression. Psychiatry Research, 220(1–2), 269–274.CrossRefPubMedGoogle Scholar
  4. Baeken, C., Marinazzo, D., Everaert, H., Wu, G. R., Van Hove, C., Audenaert, K., et al. (2015). The impact of accelerated HF-rTMS on the subgenual anterior cingulate cortex in refractory unipolar major depression: insights from 18FDG PET brain imaging. Brain Stimulation, 8(4), 808–815.CrossRefPubMedGoogle Scholar
  5. Bell-McGinty, S., Butters, M. A., Meltzer, C. C., Greer, P. J., Reynolds 3rd, C. F., & Becker, J. T. (2002). Brain morphometric abnormalities in geriatric depression: long-term neurobiological effects of illness duration. American Journal of Psychiatry, 159(8), 1424–1427.CrossRefPubMedGoogle Scholar
  6. Berman, R. M., Narasimhan, M., Sanacora, G., Miano, A. P., Hoffman, R. E., Hu, X. S., et al. (2000). A randomized clinical trial of repetitive transcranial magnetic stimulation in the treatment of major depression. Biological Psychiatry, 47(4), 332–327.CrossRefPubMedGoogle Scholar
  7. Berti, V., Mosconi, L., & Pupi, A. (2014). Brain: normal variations and benign findings in fluorodeoxyglucose-PET/computed tomography imaging. PET Clinics, 9(2), 129–140.CrossRefPubMedGoogle Scholar
  8. Brakemeier, E. L., Luborzewski, A., Danker-Hopfe, H., Kathmann, N., & Bajbouj, M. (2007). Positive predictors for antidepressive response to prefrontal repetitive transcranial magnetic stimulation (rTMS). Journal of Psychiatric Research, 41, 395–403.CrossRefPubMedGoogle Scholar
  9. Brakemeier, E. L., Wilbertz, G., Rodax, S., Danker-Hopfe, H., Zinka, B., Zwanzger, P., et al. (2008). Patterns of response to repetitive transcranial magnetic stimulation (rTMS) in major depression: replication study in drug-free patients. Journal of Affective Disorders, 108, 59–70.CrossRefPubMedGoogle Scholar
  10. Brambilla, P., Barale, F., Caverzasi, E., & Soares, J. C. (2002). Anatomical MRI findings in mood and anxiety disorders. Epidemiologia e Psichiatria Sociale, 11(2), 88–99.CrossRefPubMedGoogle Scholar
  11. Brett, M., Anton, J-L., Valabregue, R., Poline, J-B. (2002). Region of interest analysis using an SPM toolbox [abstract]. Presented at the Eighth international conference of functional mapping of the human brain, June 2–6, 2002, Sendai, Japan, 16(2). Available on CD-ROM in NeuroImage 2002Google Scholar
  12. Buckner, R. L. (2013). The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron, 80, 807–815.CrossRefPubMedGoogle Scholar
  13. Carvalho, A. F., Berk, M., Hyphantis, T. N., & McIntyre, R. S. (2014). The integrative management of treatment-resistant depression: a comprehensive review and perspectives. Psychotherapy and Psychosomatics, 83(2), 70–88.CrossRefPubMedGoogle Scholar
  14. Cohen, R. B., Boggio, P. S., & Fregni, F. (2009). Risk factors for relapse after remission with repetitive transcranial magnetic stimulation for the treatment of depression. Depression and Anxiety, 26(7), 682–688.CrossRefPubMedGoogle Scholar
  15. de Diego-Adeliño, J., Pires, P., Gómez-Ansón, B., Serra-Blasco, M., Vives-Gilabert, Y., Puigdemont, D., et al. (2014). Microstructural white-matter abnormalities associated with treatment resistance, severity and duration of illness in major depression. Psychological Medicine, 44(6), 1171–1182.CrossRefPubMedGoogle Scholar
  16. De Raedt, R., Vanderhasselt, M. A., & Baeken, C. (2015). Neurostimulation as an intervention for treatment resistant depression: from research on mechanisms towards targeted neurocognitive strategies. Clinical Psychology Review, 41, 61–69.CrossRefPubMedGoogle Scholar
  17. Ferrari, A. J., Somerville, A. J., Baxter, A. J., Norman, R., Patten, S. B., Vos, T., et al. (2013). Global variation in the prevalence and incidence of major depressive disorder: a systematic review of the epidemiological literature. Psychological Medicine, 43(3), 471–481.CrossRefPubMedGoogle Scholar
  18. George, M. S., & Post, R. M. (2011). Daily left prefrontal repetitive transcranial magnetic stimulation for acute treatment of medication-resistant depression. American Journal of Psychiatry, 168, 356–364.CrossRefPubMedGoogle Scholar
  19. Guo, W. B., Sun, X. L., Liu, L., Xu, Q., Wu, R. R., Liu, Z. N., et al. (2011). Disrupted regional homogeneity in treatment-resistant depression: a resting-state fMRI study. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 35(5), 1297–1302.CrossRefGoogle Scholar
  20. Guo, W. B., Liu, F., Chen, J. D., Gao, K., Xue, Z. M., Xu, X. J., et al. (2012). Abnormal neural activity of brain regions in treatment-resistant and treatment-sensitive major depressive disorder: a resting-state fMRI study. Journal of Psychiatric Research, 46(10), 1366–1373.CrossRefPubMedGoogle Scholar
  21. Hamilton, M. (1967). Development of a rating scale for primary depressive illness. British Journal of Social & Clinical Psychology, 6, 278–296.CrossRefGoogle Scholar
  22. Kimbrell, T. A., Little, J. T., Dunn, R. T., Frye, M. A., Greenberg, B. D., Wassermann, E. M., et al. (1999). Frequency dependence of antidepressant response to left prefrontal repetitive transcranial magnetic stimulation (rTMS) as a function of baseline cerebral glucose metabolism. Biological Psychiatry, 46(12), 1603–1613.CrossRefPubMedGoogle Scholar
  23. Lefaucheur, J. P., André-Obadia, N., Antal, A., Ayache, S. S., Baeken, C., Benninger, D. H., et al. (2014). Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clinical Neurophysiology, 125(11), 2150–2206.CrossRefPubMedGoogle Scholar
  24. Liu, F., Guo, W., Yu, D., Gao, Q., Gao, K., Xue, Z., et al. (2012). Classification of different therapeutic responses of major depressive disorder with multivariate pattern analysis method based on structural MR scans. PloS One, 7(7), e40968.CrossRefPubMedPubMedCentralGoogle Scholar
  25. Machino, A., Kunisato, Y., Matsumoto, T., Yoshimura, S., Ueda, K., Yamawaki, Y., et al. (2014). Possible involvement of rumination in gray matter abnormalities in persistent symptoms of major depression: an exploratory magnetic resonance imaging voxel-based morphometry study. Journal of Affective Disorders, 168, 229–235.CrossRefPubMedGoogle Scholar
  26. Mayberg, H. S. (2003). Modulating dysfunctional limbic-cortical circuits in depression: towards development of brain-based algorithms for diagnosis and optimised treatment. British Medical Bulletin, 65, 193–207.CrossRefPubMedGoogle Scholar
  27. Mayberg, H. S. (2009). Targeted electrode-based modulation of neural circuits for depression. Journal of Clinical Investigation, 119, 717–725.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Paillère Martinot, M. L., Galinowski, A., Ringuenet, D., Gallarda, T., Lefaucheur, J. P., Bellivier, F., et al. (2010). Influence of prefrontal target region on the efficacy of repetitive transcranial magnetic stimulation in patients with medication-resistant depression: a [(18)F]-fluorodeoxyglucose PET and MRI study. International Journal of Neuropsychopharmacology, 13, 45–590.Google Scholar
  29. Palazidou, E. (2012). The neurobiology of depression. British Medical Bulletin, 101, 127–145.CrossRefPubMedGoogle Scholar
  30. Peleman, K., Van Schuerbeek, P., Luypaert, R., Stadnik, T., De Raedt, R., De Mey, J., et al. (2010). Using 3D-MRI to localize the dorsolateral prefrontal cortex in TMS research. World Journal of Biological Psychiatry, 11(2 Pt 2), 425–430.CrossRefPubMedGoogle Scholar
  31. Peng, H. J., Zheng, H. R., Ning, Y. P., Zhang, Y., Shan, B. C., Zhang, L., et al. (2013). Abnormalities of cortical-limbic-cerebellar white matter networks may contribute to treatment-resistant depression: a diffusion tensor imaging study. BMC Psychiatry, 13, 72.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Perugi, G., Medda, P., Zanello, S., Toni, C., & Cassano, G. B. (2012). Episode length and mixed features as predictors of ECT nonresponse in patients with medication-resistant major depression. Brain Stimulation, 5(1), 18–24.CrossRefPubMedGoogle Scholar
  33. Phillips, J. R., Hewedi, D. H., Eissa, A. M., & Moustafa, A. A. (2015). The cerebellum and psychiatric disorders. Frontiers in Public Health, 3, 66.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Richieri, R., Boyer, L., Farisse, J., Colavolpe, C., Mundler, O., Lancon, C., et al. (2011). Predictive value of brain perfusion SPECT for rTMS response in pharmacoresistant depression. European Journal of Nuclear Medicine and Molecular Imaging, 38(9), 1715–1722.CrossRefPubMedGoogle Scholar
  35. Richieri, R., Boyer, L., Faget-Agius, C., Farisse, J., Mundler, O., Lançon, C., et al. (2015). Determinants of brain SPECT perfusion and connectivity in treatment-resistant depression. Psychiatry Research, 231(2), 134–140.CrossRefPubMedGoogle Scholar
  36. Rush, A. J., Thase, M. E., & Dubé, S. (2003). Research issues in the study of difficult-to-treat depression. Biological Psychiatry, 53, 743–753.CrossRefPubMedGoogle Scholar
  37. Schmahmann, J. D., & Pandya, D. N. (2008). Disconnection syndromes of basal ganglia, thalamus, and cerebrocerebellar systems. Cortex, 44, 1037–1066.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Schutter, D. J. (2009). Antidepressant efficacy of high-frequency transcranial magnetic stimulation over the left dorsolateral prefrontal cortex in double-blind sham-controlled designs: a meta-analysis. Psychological Medicine, 39(1), 65–75.CrossRefPubMedGoogle Scholar
  39. Serra-Blasco, M., Portella, M. J., Gómez-Ansón, B., de Diego-Adeliño, J., Vives-Gilabert, Y., Puigdemont, D., et al. (2013). Effects of illness duration and treatment resistance on grey matter abnormalities in major depression. British Journal of Psychiatry, 202, 434–440.CrossRefPubMedGoogle Scholar
  40. Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P., Janavs, J., Weiller, E., et al. (1998). The mini-international neuropsychiatric interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. Journal of Clinical Psychiatry, 20, 22–57.Google Scholar
  41. Speer, A. M., Benson, B. E., Kimbrell, T. K., Wassermann, E. M., Willis, M. W., Herscovitch, P., et al. (2009). Opposite effects of high and low frequency rTMS on mood in depressed patients: relationship to baseline cerebral activity on PET. Journal of Affective Disorders, 115(3), 386–394.CrossRefPubMedGoogle Scholar
  42. Stoodley, C. J., & Schmahmann, J. D. (2010). Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex, 46, 831–844.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Su, L., Cai, Y., Xu, Y., Dutt, A., Shi, S., & Bramon, E. (2014). Cerebral metabolism in major depressive disorder: a voxel-based meta-analysis of positron emission tomography studies. BMC Psychiatry, 14, 321.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Trevino, K., McClintock, S. M., McDonald Fischer, N., Vora, A., & Husain, M. M. (2014). Defining treatment-resistant depression: a comprehensive review of the literature. Annals of Clinical Psychiatry, 26(3), 222–232.PubMedGoogle Scholar
  45. Van Overwalle, F., D'aes, T., & Mariën, P. (2016). Social cognition and the cerebellum: a meta-analytic connectivity analysis. Human Brain Mapping. doi: 10.1002/hbm.23002.Google Scholar
  46. van Randenborgh, A., Hüffmeier, J., Victor, D., Klocke, K., Borlinghaus, J., & Pawelzik, M. (2012). Contrasting chronic with episodic depression: an analysis of distorted socio-emotional information processing in chronic depression. Journal of Affective Disorders, 141(2–3), 177–184.CrossRefPubMedGoogle Scholar
  47. Van Strien, J. W. (2001). Handvoorkeur en taaldominantie. Neuropraxis, 2, 10–15.Google Scholar
  48. Videbech, P., Ravnkilde, B., Pedersen, T. H., Hartvig, H., Egander, A., Clemmensen, K., et al. (2002). The Danish PET/depression project: clinical symptoms and cerebral blood flow. A regions-of-interest analysis. Acta Psychiatrica Scandinavica, 106(1), 35–44.CrossRefPubMedGoogle Scholar
  49. Vieta, E., & Colom, F. (2011). Therapeutic options in treatment-resistant depression. Annals of Medicine, 43(7), 512–530.CrossRefPubMedGoogle Scholar
  50. Yoshizawa, H., Gazes, Y., Stern, Y., Miyata, Y., & Uchiyama, S. (2014). Characterizing the normative profile of 18F-FDG PET brain imaging: sex difference, aging effect, and cognitive reserve. Psychiatry Research, 221(1), 78–85.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Key Laboratory of Cognition and Personality, Faculty of PsychologySouthwest UniversityChongqingChina
  2. 2.Department of Psychiatry and Medical PsychologyGhent UniversityGhentBelgium
  3. 3.Department of Psychiatry, Vrije Universiteit Brussel (VUB)Universitair Ziekenhuis Brussel (UZBrussel)BrusselsBelgium
  4. 4.Ghent Experimental Psychiatry (GHEP) LabGhent UniversityGhentBelgium

Personalised recommendations