Brain Imaging and Behavior

, Volume 11, Issue 1, pp 98–112 | Cite as

Cerebrovascular reactivity changes in asymptomatic female athletes attributable to high school soccer participation

  • Diana O. Svaldi
  • Emily C. McCuen
  • Chetas Joshi
  • Meghan E. Robinson
  • Yeseul Nho
  • Robert Hannemann
  • Eric A. Nauman
  • Larry J. Leverenz
  • Thomas M. Talavage
Original Research

Abstract

As participation in women’s soccer continues to grow and the longevity of female athletes’ careers continues to increase, prevention and care for mTBI in women’s soccer has become a major concern for female athletes since the long-term risks associated with a history of mTBI are well documented. Among women’s sports, soccer exhibits among the highest concussion rates, on par with those of men’s football at the collegiate level. Head impact monitoring technology has revealed that “concussive hits” occurring directly before symptomatic injury are not predictive of mTBI, suggesting that the cumulative effect of repetitive head impacts experienced by collision sport athletes should be assessed. Neuroimaging biomarkers have proven to be valuable in detecting brain changes that occur before neurocognitive symptoms in collision sport athletes. Quantifying the relationship between changes in these biomarkers and head impacts experienced by female soccer athletes may prove valuable to developing preventative measures for mTBI. This study paired functional magnetic resonance imaging with head impact monitoring to track cerebrovascular reactivity changes throughout a season and to test whether the observed changes could be attributed to mechanical loading experienced by female athletes participating in high school soccer. Marked cerebrovascular reactivity changes were observed in female soccer athletes, relative both to non-collision sport control measures and pre-season measures and were localized to fronto-temporal aspects of the brain. These changes persisted 4–5 months after the season ended and recovered by 8 months after the season. Segregation of the total soccer cohort into cumulative loading groups revealed that population-level changes were driven by athletes experiencing high cumulative loads, although athletes experiencing lower cumulative loads still contributed to group changes. The results of this study imply a non-linear relationship between cumulative loading and cerebrovascular changes with a threshold, above which the risk, of injury likely increases significantly.

Keywords

Mild traumatic brain injury Collision sports Head impacts Cerebrovascular reactivity Soccer 

Notes

Compliance with ethical standards

All procedures performed in studies involving human participants were approved by the Purdue IRB and were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Funding

This study was funded by BrainScope Company, Inc., and General Electric Healthcare.

Conflict of interest

Author Diana Otero Svaldi declares that she has no conflict of interest. Author Emily McCuen declares that she has no conflict of interest. Author Chetas Joshi declares that he has no conflict of interest. Author Yeseul Nho declares that she has no conflict of interest. Author Meghan Robinson declares that she has no conflict of interest. Author Robert Hanneman declares that he has no conflict of interest. Author Larry Leverenz declares that he has no conflict of interest. Author Eric Nauman declares that he has no conflict of interest. Author Thomas Talavage declares that he has no conflict of interest.

Informed consent

Informed parent consent and subject assent was obtained for all subjects under the age of 18. Informed consent was obtained for all subjects 18 or older.

Supplementary material

11682_2016_9509_MOESM1_ESM.docx (24 kb)
ESM 1 (DOCX 23.5 kb)
11682_2016_9509_MOESM2_ESM.docx (24 kb)
ESM 2 (DOCX 23.6 kb)

References

  1. Abbas, K., Shenk, T. E., Poole, V. N., Robinson, M. E., Leverenz, L. J., Nauman, E. A., & Talavage, T. M. (2015). Effects of repetitive sub-concussive brain injury on the functional connectivity of default mode network in high school football athletes. Developmental Neuropsychology, 40(1), 51–56. doi: 10.1080/87565641.2014.990455.CrossRefPubMedGoogle Scholar
  2. Ainslie, P. N., Cotter, J. D., George, K. P., Lucas, S., Murrell, C., Shave, R., & Atkinson, G. (2008). Elevation in cerebral blood flow velocity with aerobic fitness throughout healthy human ageing. The Journal of Physiology, 586(16), 4005–4010. doi: 10.1113/jphysiol.2008.158279.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bailes, J. E., Petraglia, A. L., Omalu, B. I., Nauman, E., & Talavage, T. (2013). Role of subconcussion in repetitive mild traumatic brain injury. Journal of Neurosurgery, 119(5), 1235–1245. doi: 10.3171/2013.7.jns121822.CrossRefPubMedGoogle Scholar
  4. Barth, J. T., Freeman, J. R., Broshek, D. K., & Varney, R. N. (2001). Acceleration-Deceleration Sport-Related Concussion: The Gravity of It All. Journal of Athletic Train, 36(3), 253–256 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12937493 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC155415/pdf/attr_36_03_0253.pdf.Google Scholar
  5. Bazarian, J. J., Zhu, T., Blyth, B., Borrino, A., & Zhong, J. (2012). Subject-specific changes in brain white matter on diffusion tensor imaging after sports-related concussion. Magnetic Resonance Imaging, 30(2), 171–180. doi: 10.1016/j.mri.2011.10.001.CrossRefPubMedGoogle Scholar
  6. Becelewski, J., & Perzchala, K. (2003). Cerebrovascular reactivity in patients with mild head injury. Polish Journal of Neurology and Neurosurgery, 37(2), 339–350.Google Scholar
  7. Birn, R. M., Smith, M. A., Jones, T. B., & Bandettini, P. A. (2008). The respiration response function: the temporal dynamics of fMRI signal fluctuations related to changes in respiration. NeuroImage, 40(2), 644–654. doi: 10.1016/j.neuroimage.2007.11.059.CrossRefPubMedGoogle Scholar
  8. Breedlove, K. M., Breedlove, E. L., Robinson, M., Poole, V. N., King, J. R. I., Rosenberger, P., et al. (2014). Detecting neurocognitive & neurophysiological changes as a result of subconcussive blows in high school football athletes. Athletic Training and Sports Healthcare, 6(3), 119–127.CrossRefGoogle Scholar
  9. Bright, M. G., Bulte, D. P., Jezzard, P., & Duyn, J. H. (2009). Characterization of regional heterogeneity in cerebrovascular reactivity dynamics using novel hypocapnia task and BOLD fMRI. NeuroImage, 48(1), 166–175. doi: 10.1016/j.neuroimage.2009.05.026.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bright, M. G., & Murphy, K. (2013). Reliable quantification of BOLD fMRI cerebrovascular reactivity despite poor breath-hold performance. NeuroImage, 83, 559–568. doi: 10.1016/j.neuroimage.2013.07.007.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Broglio, S. P., Eckner, J. T., Martini, D., Sosnoff, J. J., Kutcher, J. S., & Randolph, C. (2011). Cumulative head impact burden in high school football. Journal of Neurotrauma, 28(10), 2069–2078. doi: 10.1089/neu.2011.1825.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Broshek, D. K., Kaushik, T., Freeman, J. R., Erlanger, D., Webbe, F., & Barth, J. T. (2005). Sex differences in outcome following sports-related concussion. Journal of Neurosurgery, 102(5), 856–863.CrossRefPubMedGoogle Scholar
  13. Chan, S. T., Evans, K. C., Rosen, B. R., Song, T. Y., & Kwong, K. K. (2015). A case study of magnetic resonance imaging of cerebrovascular reactivity: a powerful imaging marker for mild traumatic brain injury. Brain Injury, 29(3), 403–407. doi: 10.3109/02699052.2014.974209.CrossRefPubMedGoogle Scholar
  14. Cox, R. W. (1996). AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29, 162–173.CrossRefPubMedGoogle Scholar
  15. De Kruijk, J. R., Twijnstra, A., & Leffers, P. (2001). Diagnostic criteria and differential diagnosis of mild traumatic brain injury. Brain Injury, 15(2), 99–106. doi: 10.1080/026990501458335.CrossRefPubMedGoogle Scholar
  16. Delaney, J. S., Lacroix, V. J., Leclerc, S., & Jonston, K. (2002). Concussions among university football and soccer players. Clinical Journal of Sports Medicine, 12, 331–338.CrossRefGoogle Scholar
  17. Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., et al. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31(3), 968–980. doi: 10.1016/j.neuroimage.2006.01.021.CrossRefPubMedGoogle Scholar
  18. Fuller, C. W., Junge, A., & Dvorak, J. (2005). A six year prospective study of the incidence and causes of head and neck injuries in international football. British Journal of Sports Medicine, 39(Suppl 1), i3–i9. doi: 10.1136/bjsm.2005.018937.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gao, Y., Zhang, J., Liu, H., Wu, G., Xiong, L., & Shu, M. (2013). Regional cerebral blood flow and cerebrovascular reacvitity in Alzheimer’s disease and vascular dementia assessed by arterial spin labeling magnetic resonance imaging. Current Neurovascular Research, 10, 49–53.CrossRefPubMedGoogle Scholar
  20. Gessel, L. M., Fields, S. K., Collins, C. L., Dick, R. W., & Comstock, R. D. (2007). Concussions among United States high school and collegiate athletes. Journal of Athletic Training, 42(4), 495–503.PubMedPubMedCentralGoogle Scholar
  21. Giza, C. C., & Hovda, D. A. (2001). The Neurometabolic Cascade of Concussion. Journal of Athletic Training, 36(3), 228–235 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12937489.PubMedPubMedCentralGoogle Scholar
  22. Golding, E. M., Steenberg, M. L., Contant Jr., C. F., Krishnappa, I., Robertson, C. S., & Bryan Jr., R. M. (1999). Cerebrovascular reactivity to CO(2) and hypotension after mild cortical impact injury. American Journal of Physiology, 277(4 Pt 2), H1457–H1466 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10516183.PubMedGoogle Scholar
  23. Guskiewicz, K. M., Marshall, S. W., Bailes, J., McCrea, M., Cantu, R. C., Randolph, C., & Jordan, B. D. (2005). Association between recurrent concussion and late-life cognitive impairment in retired professional football players. Neurosurgery, 719–726. doi: 10.1227/01.neu.0000175725.75780.dd.
  24. Guskiewicz, K. M., Marshall, S. W., Bailes, J., McCrea, M., Harding Jr., H. P., Matthews, A., et al. (2007a). Recurrent concussion and risk of depression in retired professional football players. Medicine and Science in Sports and Exercise, 39(6), 903–909. doi: 10.1249/mss.0b013e3180383da5.CrossRefPubMedGoogle Scholar
  25. Guskiewicz, K. M., McCrea, M., Marshall, S. W., Cantu, R. C., Randolph, C., Barr, W., et al. (2003). Cumulative effects associated with recurrent concussion in collegiate football players: the NCAA concussion study. Jama, 290(19), 2549–2555. doi: 10.1001/jama.290.19.2549.CrossRefPubMedGoogle Scholar
  26. Guskiewicz, K. M., Mihalik, J. P., Shankar, V., Marshall, S. W., Crowell, D. H., Oliaro, S. M., et al. (2007b). Measurement of head impacts in collegiate football players: relationship between head impact biomechanics and acute clinical outcome after concussion. Neurosurgery, 61(6), 1244–1252 discussion 1252-1243. doi: 10.1227/01.neu.0000306103.68635.1a.CrossRefPubMedGoogle Scholar
  27. Jordan, B. D., & Bailes, J. (2000). Concussion history and current neurological symptoms among retired professional football players. Neurology, 54, A410–A411.Google Scholar
  28. Kastrup, A., Gunnar, K., Neumann-Haefelin, T., & Moseley, M. (2001). Assessment of cerebrovascular reactivity with functional magnetic resonance imaging: comparison of C02 and breath holding. Magnetic Resonance Imaging, 19, 13–20.CrossRefPubMedGoogle Scholar
  29. Len, T. K., & Neary, J. P. (2011). Cerebrovascular pathophysiology following mild traumatic brain injury. Clinical Physiology and Functional Imaging, 31(2), 85–93. doi: 10.1111/j.1475-097X.2010.00990.x.PubMedGoogle Scholar
  30. Len, T. K., Neary, J. P., Asmundson, G. J., Candow, D. G., Goodman, D. G., Bjornson, B., & Bhambhani, Y. N. (2013). Serial monitoring of CO2 reactivity following sport concussion using hypocapnia and hypercapnia. Brain Injury, 27(3), 346–353. doi: 10.3109/02699052.2012.743185.CrossRefPubMedGoogle Scholar
  31. Lewis, P. M., Czosnyka, M., Smielewski, P., & J.D., P. (2014). Cerebrovascular autoregulation and monitoring of cerebrovascular reactivity. In E. H. Lo, M. Ning, J. Lok, & M. J. Whalen (Eds.), Vascular mechanisms in CNS and trauma. New York: Springer.Google Scholar
  32. Lipp, I., Murphy, K., Caseras, X., & Wise, R. G. (2015). Agreement and repeatability of vascular reactivity estimates based on a breath-hold task and a resting state scan. NeuroImage, 113, 387–396. doi: 10.1016/j.neuroimage.2015.03.004.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Lovell, M., Collins, M. W., Iverson, G. L., Field, M., Maroon, J. C., Cantu, R., et al. (2003). Recovery from mild concussion in high school athletes. Neurosurgery, 98(295–301).Google Scholar
  34. Marar, M., McIlvain, N. M., Fields, S. K., & Comstock, R. D. (2012). Epidemiology of concussions among United States high school athletes in 20 sports. The American Journal of Sports Medicine, 40(4), 747–755. doi: 10.1177/0363546511435626.CrossRefPubMedGoogle Scholar
  35. Marchi, N., Bazarian, J. J., Puvenna, V., Janigro, M., Ghosh, C., Zhong, J., et al. (2013). Consequences of repeated blood-brain barrier disruption in football players. PloS One, 8(3), e56805. doi: 10.1371/journal.pone.0056805.CrossRefPubMedPubMedCentralGoogle Scholar
  36. Maugans, T. A., Farley, C., Altaye, M., Leach, J., & Cecil, K. M. (2012). Pediatric sports-related concussion produces cerebral blood flow alterations. Pediatrics, 129(1), 28–37. doi: 10.1542/peds.2011-2083.CrossRefPubMedPubMedCentralGoogle Scholar
  37. McAllister, T. W., Ford, J. C., Flashman, L. A., Maerlender, A., Greenwald, R. M., Beckwith, J. G., et al. (2014). Effect of head impacts on diffusivity measures in a cohort of collegiate contact sport athletes. Neurology, 82(1), 63–69. doi: 10.1212/01.wnl.0000438220.16190.42.CrossRefPubMedPubMedCentralGoogle Scholar
  38. McAllister, T. W., Saykin, A. J., Flashman, L. A., Sparling, M. B., Johnson, S. C., Guerin, S. J., et al. (1999). Brain activation during working memory 1 month after mild traumatic brain injury: a functional MRI study. Neurology, 53(6), 1300–1308 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10522888.CrossRefPubMedGoogle Scholar
  39. McCaffrey, M. A., Mihalik, J. P., Crowell, D. H., Shields, E. W., & Guskiewicz, K. M. (2007). Measurement of head impacts in collegiate football players: clinical measures of concussion after high- and low-magnitude impacts. Neurosurgery, 61(6), 1236–1243 discussion 1243. doi: 10.1227/01.neu.0000306102.91506.8b.CrossRefPubMedGoogle Scholar
  40. McCuen, E. C., Svaldi, D. O., Breedlove Morigaki, K., Kraz, N., Cummiskey, B., Breedlove, E.,... Nauman, E. A. (2015). Colleigate women's soccer players suffer greater cumulative head impacts than their high school counterparts Journal of Biomechanics.Google Scholar
  41. Mihalik, J. P., Bell, D. R., Marshall, S. W., & Guskiewicz, K. M. (2007). Measurement of head impacts in collegiate football players: an investigation of positional and event-type differences. Neurosurgery, 61(6), 1229–1235 discussion 1235. doi: 10.1227/01.neu.0000306101.83882.c8.CrossRefPubMedGoogle Scholar
  42. Militana, A. R., Donahue, M. J., Sills, A. K., Solomon, G. S., Gregory, A. J., Strother, M. K., & Morgan, V. L. (2015). Alterations in default-mode network connectivity may be influenced by cerebrovascular changes within 1 week of sports related concussion in college varsity athletes: a pilot study. Brain Imaging and Behavior. doi: 10.1007/s11682-015-9407-3.Google Scholar
  43. Morris, B. (2015). Why Is the U.S. So Good at Women's Soccer? Retrieved from http://fivethirtyeight.com/datalab/why-is-the-u-s-so-good-at-womens-soccer/
  44. Murphy, K., Harris, A. D., & Wise, R. G. (2011). Robustly measuring vascular reactivity differences with breath-hold: normalising stimulus-evoked and resting state BOLD fMRI data. NeuroImage, 54(1), 369–379. doi: 10.1016/j.neuroimage.2010.07.059.CrossRefPubMedGoogle Scholar
  45. Murrell, C. J., Cotter, J. D., Thomas, K. N., Lucas, S. J., Williams, M. J., & Ainslie, P. N. (2013). Cerebral blood flow and cerebrovascular reactivity at rest and during sub-maximal exercise: effect of age and 12-week exercise training. Age (Dordrecht, Netherlands), 35(3), 905–920. doi: 10.1007/s11357-012-9414-x.CrossRefGoogle Scholar
  46. Mutch, W. A., Ellis, M. J., Graham, M. R., Wourms, V., Raban, R., Fisher, J. A., et al. (2014). Brain MRI CO2 stress testing: a pilot study in patients with concussion. PloS One, 9(7), e102181. doi: 10.1371/journal.pone.0102181.CrossRefPubMedPubMedCentralGoogle Scholar
  47. Peirce, J. W. (2007). PsychoPy–psychophysics software in python. Journal of Neuroscience Methods, 162(1–2), 8–13. doi: 10.1016/j.jneumeth.2006.11.017.CrossRefPubMedPubMedCentralGoogle Scholar
  48. Poole, V. N., Abbas, K., Shenk, T. E., Breedlove, E. L., Breedlove, K. M., Robinson, M. E., et al. (2014). MR spectroscopic evidence of brain injury in the non-diagnosed collision sport athlete. Developmental Neuropsychology, 39(6), 459–473. doi: 10.1080/87565641.2014.940619.CrossRefPubMedGoogle Scholar
  49. Poole, V. N., Breedlove, E. L., Shenk, T. E., Abbas, K., Robinson, M. E., Leverenz, L. J., et al. (2015). Sub-concussive hit characteristics predict deviant brain metabolism in football athletes. Developmental Neuropsychology, 40(1), 12–17. doi: 10.1080/87565641.2014.984810.CrossRefPubMedGoogle Scholar
  50. Robinson, M. E., Shenk, T. E., Breedlove, E. L., Leverenz, L. J., Nauman, E. A., & Talavage, T. M. (2015). The role of location of subconcussive head impacts in FMRI brain activation change. Developmental Neuropsychology, 40(2), 74–79. doi: 10.1080/87565641.2015.1012204.CrossRefPubMedGoogle Scholar
  51. Rosenthal, J. A., Foraker, R. E., Collins, C. L., & Comstock, R. D. (2014). National high school athlete concussion rates from 2005 to 2006 to 2011–2012. The American Journal of Sports Medicine, 42(7), 1710–1715. doi: 10.1177/0363546514530091.CrossRefPubMedGoogle Scholar
  52. Rosso, S. M., Landweer, E. J., Houterman, M., Donker Kaat, L., van Duijn, C. M., & van Swieten, J. C. (2003). Medical and environmental risk factors for sporadic frontotemporal dementia: a retrospective case-control study. Journal of Neurology, Neurosurgery & Psychiatry, 74(11), 1574–1576 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14617722.CrossRefGoogle Scholar
  53. Schnebel, B., Gwin, J. T., Anderson, S., & Gatlin, R. (2007). In vivo study of head impacts in football: a comparison of national collegiate athletic association division I versus high school impacts. Neurosurgery, 60(3), 490–495 discussion 495-496. doi: 10.1227/01.NEU.0000249286.92255.7F.CrossRefPubMedGoogle Scholar
  54. Schulz, M. R., Marshall, S. W., Mueller, F. O., Yang, J., Weaver, N. L., Kalsbeek, W. D., & Bowling, J. M. (2004). Incidence and risk factors for concussion in high school athletes, North Carolina, 1996–1999. American Journal of Epidemiology, 160(10), 937–944. doi: 10.1093/aje/kwh304.CrossRefPubMedGoogle Scholar
  55. Shenk, T. E., Robinson, M. E., Svaldi, D. O., Abbas, K., Breedlove, K. M., Leverenz, L. J., et al. (2015). FMRI of visual working memory in high school football players. Developmental Neuropsychology, 40(2), 63–68. doi: 10.1080/87565641.2015.1014088.CrossRefPubMedGoogle Scholar
  56. Sim, A., Terryberry-Spohr, L., & Wilson, K. R. (2008). Prolonged recovery of memory functioning after mild traumatic brain injury in adolescent athletes. Journal of Neurosurgery, 108(3), 511–516. doi: 10.3171/JNS/2008/108/3/0511.CrossRefPubMedGoogle Scholar
  57. Slobounov, S., Sebastianelli, W., & Hallett, M. (2012). Residual brain dysfunction observed one year post-mild traumatic brain injury: combined EEG and balance study. Clinical Neurophysiology, 123(9), 1755–1761. doi: 10.1016/j.clinph.2011.12.022.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Snowden, J. S., Neary, D., & Mann, D. M. (2002). Frontotemporal dementia. The British Journal of Psychiatry, 180, 140–143 Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11823324.CrossRefPubMedGoogle Scholar
  59. Svaldi, D. O., Joshi, C., Robinson, M. E., Shenk, T. E., Abbas, K., Nauman, E. A., et al. (2015). Cerebrovascular reactivity alterations in asymptomatic high school football players. Developmental Neuropsychology, 40(2), 80–84. doi: 10.1080/87565641.2014.973959.CrossRefPubMedGoogle Scholar
  60. Talavage, T. M., Nauman, E. A., Breedlove, E. L., Yoruk, U., Dye, A. E., Morigaki, K. E., et al. (2014). Functionally-detected cognitive impairment in high school football players without clinically-diagnosed concussion. Journal of Neurotrauma, 31(4), 327–338. doi: 10.1089/neu.2010.1512.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Wang, Y., West, J. D., Bailey, J. N., Westfall, D. R., Xiao, H., Arnold, T. W., et al. (2015). Decreased cerebral blood flow in chronic pediatric mild TBI: an MRI perfusion study. Developmental Neuropsychology, 40(1), 40–44. doi: 10.1080/87565641.2014.979927.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Yezhuvath, U. S., Uh, J., Cheng, Y., Martin-Cook, K., Weiner, M., Diaz-Arrastia, R., et al. (2012). Forebrain-dominant deficit in cerebrovascular reactivity in Alzheimer's disease. Neurobiology of Aging, 33(1), 75–82. doi: 10.1016/j.neurobiolaging.2010.02.005.CrossRefPubMedGoogle Scholar
  63. Zhang, F., Sprague, S. M., Farrokhi, F., Henry, M. N., Son, M. G., & Vollmer, D. G. (2002). Reversal of attenuation of cerebrovascular reactivity to hypercapnia by a nitric oxide donor after controlled cortical impact in a rat model of traumatic brain injury. Journal of Neurosurgery, 97(4), 963–969. doi: 10.3171/jns.2002.97.4.0963.CrossRefPubMedGoogle Scholar
  64. Zuckerman, S. L., Kerr, Z. Y., Yengo-Kahn, A., Wasserman, E., Covassin, T., & Solomon, G. S. (2015). Epidemiology of sports-related concussion in NCAA athletes from 2009 to 2010 to 2013–2014: incidence, recurrence, and mechanisms. The American Journal of Sports Medicine. doi: 10.1177/0363546515599634.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Diana O. Svaldi
    • 1
  • Emily C. McCuen
    • 1
  • Chetas Joshi
    • 2
  • Meghan E. Robinson
    • 3
  • Yeseul Nho
    • 4
  • Robert Hannemann
    • 1
    • 5
  • Eric A. Nauman
    • 1
    • 6
    • 8
  • Larry J. Leverenz
    • 7
    • 8
  • Thomas M. Talavage
    • 1
    • 2
    • 8
  1. 1.Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteUSA
  2. 2.School of Electrical and Computer EngineeringPurdue UniversityWest LafayetteUSA
  3. 3.School of Chemical EngineeringPurdue UniversityWest LafayetteUSA
  4. 4.Department of PsychologyUniversity of CaliforniaBerkeleyUSA
  5. 5.Neuroimaging Research for Veterans (NeRVe) CenterVA Boston Healthcare SystemBostonUSA
  6. 6.School of Mechanical EngineeringPurdue UniversityWest LafayetteUSA
  7. 7.Department of Health and KinesiologyPurdue UniversityWest LafayetteUSA
  8. 8.Concussion Neuroimaging ConsortiumPurdue UniversityWest LafayetteUSA

Personalised recommendations