Brain Imaging and Behavior

, Volume 11, Issue 1, pp 1–7 | Cite as

Occipital cortical gyrification reductions associate with decreased functional connectivity in amyotrophic lateral sclerosis

  • Yuanchao Zhang
  • Tao Fang
  • Yue Wang
  • Xin Guo
  • Abdulqawi Alarefi
  • Jian Wang
  • Tianzi Jiang
  • Jiuquan Zhang
Original Research


Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive muscular weakness and atrophy. Several morphometric studies have been conducted to investigate the gray matter volume or thickness changes in ALS, whereas the cortical folding pattern remains poorly understood. In the present study, we applied a surface-based local gyrification index (LGI) from high resolution MRI data to quantify the cortical folding in matched samples of 25 ALS patients versus 25 healthy controls. Using resting-state fMRI data, we further conducted seed-based functional connectivity analysis to explore the functional correlate of the cortical folding changes. We found that ALS patients had significantly reduced LGI in right occipital cortex and that abnormality in this region associated with decreased functional connectivity in the bilateral precuneus. This set of findings was speculated to result from disturbed white matter connectivity in ALS. In the patient group, we revealed significant negative correlations between disease duration and the LGIs of a cluster in the left superior frontal gyrus, which may reflect the cognitive deterioration in ALS. In summary, our results suggest that LGI may provide a useful means to assess ALS-related neurodegeneration and to study the pathophysiology of ALS.


Amyotrophic lateral sclerosis Cortical folding Local gyrification index Functional connectivity White matter connectivity 


Compliance with ethical standards

All procedures performed in this study of human participants were in accordance with the ethical standards of the institutional review board and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all the participants. The study was approved by the Medical Research Ethics Committee of Southwest Hospital, The Third Military Medical University, People’s Republic of China.

Conflict of interest

All authors declare that they have no conflict of interest.


This work was funded by the National Basic Research Program of China (973 program, Grant No. 2011CB707800), the Natural Science Foundation of China (Grant Nos. 81101000), and Plan A of Science and Technology Support Program from Science and Technology Department of Sichuan Province (Grant No. 2014SZ0014).


  1. Agosta, F., Valsasina, P., Riva, N., Copetti, M., Messina, M. J., Prelle, A., Comi, G., & Filippi, M. (2012). The cortical signature of amyotrophic lateral sclerosis. PloS One, 7(8), e42816.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ash, S., Olm, C., McMillan, C. T., Boller, A., Irwin, D. J., McCluskey, L., Elman, L., & Grossman, M. (2015). Deficits in sentence expression in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis & Frontotemporal Degeneration, 16(1–2), 31–39. doi: 10.3109/21678421.2014.974617.CrossRefGoogle Scholar
  3. Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry—the methods. NeuroImage, 11(6), 805–821.CrossRefPubMedGoogle Scholar
  4. Bede, P., Bokde, A., Elamin, M., Byrne, S., McLaughlin, R. L., Jordan, N., Hampel, H., Gallagher, L., Lynch, C., Fagan, A. J., Pender, N., & Hardiman, O. (2013). Grey matter correlates of clinical variables in amyotrophic lateral sclerosis (ALS): a neuroimaging study of ALS motor phenotype heterogeneity and cortical focality. Journal of Neurology, Neurosurgery, and Psychiatry, 84(7), 766–773. doi: 10.1136/jnnp-2012-302674.CrossRefPubMedGoogle Scholar
  5. Brooks, B. R., Miller, R. G., Swash, M., & Munsat, T. L. (2000). El Escorial revisited: revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders: Official Publication of the World Federation of Neurology, Research Group on Motor Neuron Diseases, 1(5), 293–299.CrossRefGoogle Scholar
  6. Cedarbaum, J. M., Stambler, N., Malta, E., Fuller, C., Hilt, D., Thurmond, B., & Nakanishi, A. (1999). The ALSFRS-R: a revised ALS functional rating scale that incorporates assessments of respiratory function. BDNF ALS study group (phase III). Journal of the Neurological Sciences, 169(1–2), 13–21.CrossRefPubMedGoogle Scholar
  7. Cistaro, A., Valentini, M. C., Chio, A., Nobili, F., Calvo, A., Moglia, C., Montuschi, A., Morbelli, S., Salmaso, D., Fania, P., Carrara, G., & Pagani, M. (2012). Brain hypermetabolism in amyotrophic lateral sclerosis: a FDG PET study in ALS of spinal and bulbar onset. European Journal of Nuclear Medicine and Molecular Imaging, 39(2), 251–259. doi: 10.1007/s00259-011-1979-6.CrossRefPubMedGoogle Scholar
  8. Dalakas, M. C., Hatazawa, J., Brooks, R. A., & Di Chiro, G. (1987). Lowered cerebral glucose utilization in amyotrophic lateral sclerosis. Annals of Neurology, 22(5), 580–586. doi: 10.1002/ana.410220504.CrossRefPubMedGoogle Scholar
  9. Evans, J., Olm, C., McCluskey, L., Elman, L., Boller, A., Moran, E., Rascovsky, K., Bisbing, T., McMillan, C. T., & Grossman, M. (2015). Impaired cognitive flexibility in amyotrophic lateral sclerosis. Cognitive and Behavioral neurology: Official Journal of the Society for Behavioral and Cognitive Neurology, 28(1), 17–26. doi: 10.1097/WNN.0000000000000049.CrossRefGoogle Scholar
  10. Grosskreutz, J., Kaufmann, J., Fradrich, J., Dengler, R., Heinze, H. J., & Peschel, T. (2006). Widespread sensorimotor and frontal cortical atrophy in amyotrophic lateral sclerosis. BMC Neurology, 6, 17. doi: 10.1186/1471-2377-6-17.CrossRefPubMedPubMedCentralGoogle Scholar
  11. Hagmann, P., Sporns, O., Madan, N., Cammoun, L., Pienaar, R., Wedeen, V. J., Meuli, R., Thiran, J. P., & Grant, P. E. (2010). White matter maturation reshapes structural connectivity in the late developing human brain. Proceedings of the National Academy of Sciences of the United States of America, 107(44), 19067–19072. doi: 10.1073/pnas.1009073107.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hartung, V., Prell, T., Gaser, C., Turner, M. R., Tietz, F., Ilse, B., Bokemeyer, M., Witte, O. W., & Grosskreutz, J. (2014). Voxel-based MRI intensitometry reveals extent of cerebral white matter pathology in amyotrophic lateral sclerosis. PloS One, 9(8), e104894. doi: 10.1371/journal.pone.0104894.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hayasaka, S., Phan, K. L., Liberzon, I., Worsley, K. J., & Nichols, T. E. (2004). Nonstationary cluster-size inference with random field and permutation methods. NeuroImage, 22(2), 676–687. doi: 10.1016/j.neuroimage.2004.01.041.CrossRefPubMedGoogle Scholar
  14. Hogstrom, L. J., Westlye, L. T., Walhovd, K. B., & Fjell, A. M. (2013). The structure of the cerebral cortex across adult life: age-related patterns of surface area, thickness, and gyrification. Cerebral Cortex, 23(11), 2521–2530. doi: 10.1093/cercor/bhs231.CrossRefPubMedGoogle Scholar
  15. Kushner, P. D., Stephenson, D. T., & Wright, S. (1991). Reactive astrogliosis is widespread in the subcortical white matter of amyotrophic lateral sclerosis brain. Journal of Neuropathology and Experimental Neurology, 50(3), 263–277.CrossRefPubMedGoogle Scholar
  16. Luders, E., Kurth, F., Mayer, E. A., Toga, A. W., Narr, K. L., & Gaser, C. (2012). The unique brain anatomy of meditation practitioners: alterations in cortical gyrification. Frontiers in Human Neuroscience, 6, 34. doi: 10.3389/fnhum.2012.00034.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Lule, D., Diekmann, V., Muller, H. P., Kassubek, J., Ludolph, A. C., & Birbaumer, N. (2010). Neuroimaging of multimodal sensory stimulation in amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery, and Psychiatry, 81(8), 899–906. doi: 10.1136/jnnp.2009.192260.CrossRefPubMedGoogle Scholar
  18. Mezzapesa, D. M., D'Errico, E., Tortelli, R., Distaso, E., Cortese, R., Tursi, M., Federico, F., Zoccolella, S., Logroscino, G., Dicuonzo, F., & Simone, I. L. (2013). Cortical thinning and clinical heterogeneity in amyotrophic lateral sclerosis. PloS One, 8(11), e80748. doi: 10.1371/journal.pone.0080748.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Mitchell, J. D., & Borasio, G. D. (2007). Amyotrophic lateral sclerosis. Lancet, 369(9578), 2031–2041. doi: 10.1016/S0140-6736(07)60944-1.CrossRefPubMedGoogle Scholar
  20. Nasreddine, Z. S., Phillips, N. A., Bedirian, V., Charbonneau, S., Whitehead, V., Collin, I., Cummings, J. L., & Chertkow, H. (2005). The Montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695–699. doi: 10.1111/j.1532-5415.2005.53221.x.CrossRefPubMedGoogle Scholar
  21. Neary, D., Snowden, J. S., Gustafson, L., Passant, U., Stuss, D., Black, S., Freedman, M., Kertesz, A., Robert, P. H., Albert, M., Boone, K., Miller, B. L., Cummings, J., & Benson, D. F. (1998). Frontotemporal lobar degeneration: a consensus on clinical diagnostic criteria. Neurology, 51(6), 1546–1554.CrossRefPubMedGoogle Scholar
  22. Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97–113.CrossRefPubMedGoogle Scholar
  23. Pagani, M., Chio, A., Valentini, M. C., Oberg, J., Nobili, F., Calvo, A., Moglia, C., Bertuzzo, D., Morbelli, S., De Carli, F., Fania, P., & Cistaro, A. (2014). Functional pattern of brain FDG-PET in amyotrophic lateral sclerosis. Neurology, 83(12), 1067–1074. doi: 10.1212/WNL.0000000000000792.CrossRefPubMedGoogle Scholar
  24. Palaniyappan, L., & Liddle, P. F. (2012). Differential effects of surface area, gyrification and cortical thickness on voxel based morphometric deficits in schizophrenia. NeuroImage, 60(1), 693–699. doi: 10.1016/j.neuroimage.2011.12.058.CrossRefPubMedGoogle Scholar
  25. Panizzon, M. S., Fennema-Notestine, C., Eyler, L. T., Jernigan, T. L., Prom-Wormley, E., Neale, M., Jacobson, K., Lyons, M. J., Grant, M. D., Franz, C. E., Xian, H., Tsuang, M., Fischl, B., Seidman, L., Dale, A., & Kremen, W. S. (2009). Distinct genetic influences on cortical surface area and cortical thickness. Cerebral Cortex, 19(11), 2728–2735. doi: 10.1093/cercor/bhp026.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Phukan, J., Pender, N. P., & Hardiman, O. (2007). Cognitive impairment in amyotrophic lateral sclerosis. The Lancet Neurology, 6(11), 994–1003. doi: 10.1016/S1474-4422(07)70265-X.CrossRefPubMedGoogle Scholar
  27. Rajagopalan, V., & Pioro, E. P. (2015). Comparing brain structural MRI and metabolic FDG-PET changes in patients with ALS-FTD: 'the chicken or the egg?' question. Journal of Neurology, Neurosurgery, and Psychiatry, 86(9), 952–958. doi: 10.1136/jnnp-2014-308239.CrossRefPubMedGoogle Scholar
  28. Sarro, L., Agosta, F., Canu, E., Riva, N., Prelle, A., Copetti, M., Riccitelli, G., Comi, G., & Filippi, M. (2011). Cognitive functions and white matter tract damage in amyotrophic lateral sclerosis: a diffusion tensor tractography study. AJNR American Journal of Neuroradiology, 32(10), 1866–1872. doi: 10.3174/ajnr.A2658.CrossRefPubMedGoogle Scholar
  29. Schaer, M., Cuadra, M. B., Tamarit, L., Lazeyras, F., Eliez, S., & Thiran, J. P. (2008). A surface-based approach to quantify local cortical gyrification. IEEE Transactions on Medical Imaging, 27(2), 161–170. doi: 10.1109/TMI.2007.903576.CrossRefPubMedGoogle Scholar
  30. Schuster, C., Kasper, E., Dyrba, M., Machts, J., Bittner, D., Kaufmann, J., Mitchell, A. J., Benecke, R., Teipel, S., Vielhaber, S., & Prudlo, J. (2014a). Cortical thinning and its relation to cognition in amyotrophic lateral sclerosis. Neurobiology of Aging, 35(1), 240–246. doi: 10.1016/j.neurobiolaging.2013.07.020.CrossRefPubMedGoogle Scholar
  31. Schuster, C., Kasper, E., Machts, J., Bittner, D., Kaufmann, J., Benecke, R., Teipel, S., Vielhaber, S., & Prudlo, J. (2014b). Longitudinal course of cortical thickness decline in amyotrophic lateral sclerosis. Journal of Neurology, 261(10), 1871–1880. doi: 10.1007/s00415-014-7426-4.CrossRefPubMedGoogle Scholar
  32. Singh, V., Chertkow, H., Lerch, J. P., Evans, A. C., Dorr, A. E., & Kabani, N. J. (2006). Spatial patterns of cortical thinning in mild cognitive impairment and Alzheimer's disease. Brain, 129(Pt 11), 2885–2893. doi: 10.1093/brain/awl256.CrossRefPubMedGoogle Scholar
  33. Stoppel, C. M., Vielhaber, S., Eckart, C., Machts, J., Kaufmann, J., Heinze, H. J., Kollewe, K., Petri, S., Dengler, R., Hopf, J. M., & Schoenfeld, M. A. (2014). Structural and functional hallmarks of amyotrophic lateral sclerosis progression in motor- and memory-related brain regions. NeuroImage Clinical, 5, 277–290. doi: 10.1016/j.nicl.2014.07.007.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Thorns, J., Jansma, H., Peschel, T., Grosskreutz, J., Mohammadi, B., Dengler, R., & Munte, T. F. (2013). Extent of cortical involvement in amyotrophic lateral sclerosis–an analysis based on cortical thickness. BMC Neurology, 13, 148. doi: 10.1186/1471-2377-13-148.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Van Essen, D. C. (1997). A tension-based theory of morphogenesis and compact wiring in the central nervous system. Nature, 385(6614), 313–318. doi: 10.1038/385313a0.CrossRefPubMedGoogle Scholar
  36. Verma, G., Woo, J. H., Chawla, S., Wang, S., Sheriff, S., Elman, L. B., McCluskey, L. F., Grossman, M., Melhem, E. R., Maudsley, A. A., & Poptani, H. (2013). Whole-brain analysis of amyotrophic lateral sclerosis by using echo-planar spectroscopic imaging. Radiology, 267(3), 851–857. doi: 10.1148/radiol.13121148.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Witiuk, K., Fernandez-Ruiz, J., McKee, R., Alahyane, N., Coe, B. C., Melanson, M., & Munoz, D. P. (2014). Cognitive deterioration and functional compensation in ALS measured with fMRI using an inhibitory task. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 34(43), 14260–14271. doi: 10.1523/JNEUROSCI.1111-14.2014.CrossRefGoogle Scholar
  38. Zago, S., Poletti, B., Morelli, C., Doretti, A., & Silani, V. (2011). Amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD). Archives Italiennes de Biologie, 149(1), 39–56. doi: 10.4449/aib.v149i1.1263.PubMedGoogle Scholar
  39. Zhang, J., Yin, X., Zhao, L., Evans, A. C., Song, L., Xie, B., Li, H., Luo, C., & Wang, J. (2014a). Regional alterations in cortical thickness and white matter integrity in amyotrophic lateral sclerosis. Journal of Neurology, 261(2), 412–421. doi: 10.1007/s00415-013-7215-5.CrossRefPubMedGoogle Scholar
  40. Zhang, Y., Zhang, J., Xu, J., Wu, X., Zhang, Y., Feng, H., Wang, J., & Jiang, T. (2014b). Cortical gyrification reductions and subcortical atrophy in Parkinson's disease. Movement Disorders: official Journal of the Movement Disorder Society, 29(1), 122–126. doi: 10.1002/mds.25680.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yuanchao Zhang
    • 1
  • Tao Fang
    • 1
  • Yue Wang
    • 1
  • Xin Guo
    • 1
  • Abdulqawi Alarefi
    • 1
  • Jian Wang
    • 2
  • Tianzi Jiang
    • 1
    • 3
  • Jiuquan Zhang
    • 2
  1. 1.Key Laboratory for NeuroInformation of Ministry of Education, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Department of Radiology, Southwest HospitalThird Military Medical UniversityChongqingChina
  3. 3.National Laboratory of Pattern Recognition, Institute of AutomationChinese Academy of SciencesBeijingChina

Personalised recommendations