Brain Imaging and Behavior

, Volume 11, Issue 1, pp 264–277 | Cite as

Intrinsic brain subsystem associated with dietary restraint, disinhibition and hunger: an fMRI study

  • Jizheng Zhao
  • Mintong Li
  • Yi Zhang
  • Huaibo Song
  • Karen M. von Deneen
  • Yinggang Shi
  • Yijun Liu
  • Dongjian He
Original Research


Eating behaviors are closely related to body weight, and eating traits are depicted in three dimensions: dietary restraint, disinhibition, and hunger. The current study aims to explore whether these aspects of eating behaviors are related to intrinsic brain activation, and to further investigate the relationship between the brain activation relating to these eating traits and body weight, as well as the link between function connectivity (FC) of the correlative brain regions and body weight. Our results demonstrated positive associations between dietary restraint and baseline activation of the frontal and the temporal regions (i.e., food reward encoding) and the limbic regions (i.e., homeostatic control, including the hypothalamus). Disinhibition was positively associated with the activation of the frontal motivational system (i.e., OFC) and the premotor cortex. Hunger was positively related to extensive activations in the prefrontal, temporal, and limbic, as well as in the cerebellum. Within the brain regions relating to dietary restraint, weight status was negatively correlated with FC of the left middle temporal gyrus and left inferior temporal gyrus, and was positively associated with the FC of regions in the anterior temporal gyrus and fusiform visual cortex. Weight status was positively associated with the FC within regions in the prefrontal motor cortex and the right ACC serving inhibition, and was negatively related with the FC of regions in the frontal cortical-basal ganglia-thalamic circuits responding to hunger control. Our data depicted an association between intrinsic brain activation and dietary restraint, disinhibition, and hunger, and presented the links of their activations and FCs with weight status.


Obesity Functional magnetic resonance imaging Resting state Functional connectivity Three factor eating questionnaire 


Compliance with ethical standards

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all patients for being included in the study.


This paper is supported by National Natural Science Foundation of China under Grant Nos. 61473235, 81271549, 61131003, 81470816, 61431013, 81201081, 81227901, 81120108005; the Fundamental Research Funds for the Central Universities No. QN2012031; the Shaanxi Provincial Natural Science Foundation under Grant No. 2015JM3117.

Data collection and sharing project was funded in part by the New York State Office of Mental Health and Research Foundation for Mental Hygiene. Additional project support provided by the NKI Center for Advanced Brain Imaging (CABI), the Brain Research Foundation (Chicago, IL), the Stavros Niarchos Foundation, and NIH grant P50 MH086385-S1. The project Directors were F. Xavier Castellanos, Bennett Leventhal, and Michael Milham. The Project Coordinator was Kate Nooner. David Gutman and Maarten Mennes finished Computational Infrastructure and Data Analytic Development/Support. The NKI/Rockland Sample Team included Melissa Benedict, Bharat Biswal, Barbara Coffey, Stan Colcombe, David Guilfoyle, David Gutman, Harold S. Koplewicz, Matthew Hoptman, Dan Javitt, Larry Maayan, Maarten Mennes, Kate Nooner, Nunzio Pomara. I would like to express my gratitude to Heather S. Pixley for the English editing of this paper.

Conflict of interest

The authors declare that they have no conflicts of interest.

Informed consent

Informed consent was obtained when study participants joined the International Neuroimaging Data-sharing Initiative (INDI) database.


  1. Allen, G., McColl, R., Barnard, H., Ringe, W. K., Fleckenstein, J., & Cullum, C. M. (2005). Magnetic resonance imaging of cerebellar–prefrontal and cerebellar–parietal functional connectivity. NeuroImage, 28(1), 39–48.CrossRefPubMedGoogle Scholar
  2. Beaver, J. D., Lawrence, A. D., van Ditzhuijzen, J., Davis, M. H., Woods, A., & Calder, A. J. (2006). Individual differences in reward drive predict neural responses to images of food. The Journal of Neuroscience, 26(19), 5160–5166.CrossRefPubMedGoogle Scholar
  3. Berthoud, H.-R., & Morrison, C. (2008). The brain, appetite, and obesity. Annual Review of Psychology, 59, 55–92.CrossRefPubMedGoogle Scholar
  4. Blundell, J. E., Caudwell, P., Gibbons, C., Hopkins, M., Naslund, E., King, N., et al. (2012). Role of resting metabolic rate and energy expenditure in hunger and appetite control: a new formulation. Disease Models & Mechanisms, 5(5), 608–613. doi: 10.1242/dmm.009837.CrossRefGoogle Scholar
  5. Bond, M. J., McDowell, A. J., & Wilkinson, J. Y. (2001). The measurement of dietary restraint, disinhibition and hunger: an examination of the factor structure of the Three Factor Eating Questionnaire (TFEQ). International Journal of Obesity and Related Metabolic Disorders, 25(6), 900–906. doi: 10.1038/sj.ijo.0801611.CrossRefPubMedGoogle Scholar
  6. Born, J. M., Lemmens, S. G., Rutters, F., Nieuwenhuizen, A. G., Formisano, E., Goebel, R., et al. (2010). Acute stress and food-related reward activation in the brain during food choice during eating in the absence of hunger. International Journal of Obesity, 34(1), 172–181. doi: 10.1038/ijo.2009.221.CrossRefPubMedGoogle Scholar
  7. Born, J. M., Lemmens, S. G., Martens, M. J., Formisano, E., Goebel, R., & Westerterp-Plantenga, M. S. (2011). Differences between liking and wanting signals in the human brain and relations with cognitive dietary restraint and body mass index. The American Journal of Clinical Nutrition, 94(2), 392–403.CrossRefPubMedGoogle Scholar
  8. Boschi, V., Iorio, D., Margiotta, N., D'Orsi, P., & Falconi, C. (2001). The three-factor eating questionnaire in the evaluation of eating behaviour in subjects seeking participation in a dietotherapy programme. Annals of Nutrition & Metabolism, 45(2), 72–77.CrossRefGoogle Scholar
  9. Bush, G., Vogt, B. A., Holmes, J., Dale, A. M., Greve, D., Jenike, M. A., et al. (2002). Dorsal anterior cingulate cortex: A role in reward-based decision making. Proceedings of the National Academy of Sciences, 99(1), 523–528. doi: 10.1073/pnas.012470999.CrossRefGoogle Scholar
  10. Castellanos, E. H., Charboneau, E., Dietrich, M. S., Park, S., Bradley, B. P., Mogg, K., et al. (2009). Obese adults have visual attention bias for food cue images: evidence for altered reward system function. International Journal of Obesity, 33(9), 1063–1073. doi: 10.1038/ijo.2009.138.CrossRefPubMedGoogle Scholar
  11. Chao-Gan, Y., & Yu-Feng, Z. (2010). DPARSF: A MATLAB Toolbox for "Pipeline" Data Analysis of Resting-State fMRI. Frontiers in Systems Neuroscience, 4, 13. doi: 10.3389/fnsys.2010.00013.PubMedPubMedCentralGoogle Scholar
  12. Cornier, M.-A., Von Kaenel, S. S., Bessesen, D. H., & Tregellas, J. R. (2007). Effects of overfeeding on the neuronal response to visual food cues. The American Journal of Clinical Nutrition, 86(4), 965–971.PubMedGoogle Scholar
  13. de Castro, J. M., & Lilenfeld, L. R. R. (2005). Influence of heredity on dietary restraint, disinhibition, and perceived hunger in humans. Nutrition, 21(4), 446–455. doi: 10.1016/j.nut.2004.07.010.CrossRefPubMedGoogle Scholar
  14. De Silva, A., Salem, V., Matthews, P. M., & Dhillo, W. S. (2012). The Use of Functional MRI to Study Appetite Control in the CNS. Experimental Diabetes Research, 2012, 13. doi: 10.1155/2012/764017.CrossRefGoogle Scholar
  15. DelParigi, A., Chen, K., Salbe, A. D., Reiman, E. M., & Tataranni, P. A. (2005). Sensory experience of food and obesity: a positron emission tomography study of the brain regions affected by tasting a liquid meal after a prolonged fast. NeuroImage, 24(2), 436–443. doi: 10.1016/j.neuroimage.2004.08.035.CrossRefPubMedGoogle Scholar
  16. DelParigi, A., Chen, K., Salbe, A., Hill, J., Wing, R., Reiman, E., et al. (2007). Successful dieters have increased neural activity in cortical areas involved in the control of behavior. International Journal of Obesity, 31(3), 440–448.CrossRefPubMedGoogle Scholar
  17. Dietrich, A., Federbusch, M., Grellmann, C., Villringer, A., & Horstmann, A. (2014). Body weight status, eating behavior, sensitivity to reward/punishment, and gender: relationships and interdependencies. Frontiers in Psychology, 5, 1073.PubMedPubMedCentralGoogle Scholar
  18. Drapeau, V., Provencher, V., Lemieux, S., Despres, J. P., Bouchard, C., & Tremblay, A. (2003). Do 6-y changes in eating behaviors predict changes in body weight? Results from the Quebec Family Study. International Journal of Obesity and Related Metabolic Disorders, 27(7), 808–814.CrossRefPubMedGoogle Scholar
  19. Elfhag, K. (2005). Personality correlates of obese eating behaviour: Swedish universities Scales of Personality and the Three Factor Eating Questionnaire. Eating and Weight Disorders-Studies on Anorexia, Bulimia and Obesity, 10(4), 210–215.CrossRefGoogle Scholar
  20. Fayet, F., Petocz, P., & Samman, S. (2012). Prevalence and correlates of dieting in college women: a cross sectional study. Int J Womens Health, 4, 405–411. doi: 10.2147/ijwh.s33920.PubMedPubMedCentralGoogle Scholar
  21. Fineberg, N. A., Potenza, M. N., Chamberlain, S. R., Berlin, H. A., Menzies, L., Bechara, A., et al. (2009). Probing Compulsive and Impulsive Behaviors, from Animal Models to Endophenotypes: A Narrative Review. Neuropsychopharmacology, 35(3), 591–604.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Foster, G. D., Wadden, T. A., Swain, R. M., Stunkard, A. J., Platte, P., & Vogt, R. A. (1998). The Eating Inventory in obese women: clinical correlates and relationship to weight loss. International Journal of Obesity and Related Metabolic Disorders, 22(8), 778–785.CrossRefPubMedGoogle Scholar
  23. Frank, G. K., Reynolds, J. R., Shott, M. E., Jappe, L., Yang, T. T., Tregellas, J. R., et al. (2012). Anorexia nervosa and obesity are associated with opposite brain reward response. Neuropsychopharmacology, 37(9), 2031–2046.CrossRefPubMedPubMedCentralGoogle Scholar
  24. Fuhrer, D., Zysset, S., & Stumvoll, M. (2008). Brain activity in hunger and satiety: an exploratory visually stimulated FMRI study. Obesity (Silver Spring), 16(5), 945–950. doi: 10.1038/oby.2008.33.CrossRefGoogle Scholar
  25. Gallant, A. R., Tremblay, A., Perusse, L., Despres, J. P., Bouchard, C., & Drapeau, V. (2013). Parental eating behavior traits are related to offspring BMI in the Quebec Family Study. International Journal of Obesity, 37(11), 1422–1426. doi: 10.1038/ijo.2013.14.CrossRefPubMedGoogle Scholar
  26. García-García, I., Jurado, M. Á., Garolera, M., Segura, B., Sala-Llonch, R., Marqués-Iturria, I., et al. (2013). Alterations of the salience network in obesity: A resting-state fMRI study. Human Brain Mapping, 34(11), 2786–2797. doi: 10.1002/hbm.22104.
  27. Gearhardt, A. N., Yokum, S., Stice, E., Harris, J. L., & Brownell, K. D. (2013). Relation of obesity to neural activation in response to food commercials. Social Cognitive and Affective Neuroscience. doi: 10.1093/scan/nst059.PubMedPubMedCentralGoogle Scholar
  28. Gearhardt, A. N., Yokum, S., Stice, E., Harris, J. L., & Brownell, K. D. (2014). Relation of obesity to neural activation in response to food commercials. Social Cognitive and Affective Neuroscience, 9(7), 932–938.CrossRefPubMedGoogle Scholar
  29. Goldstone, A. P., Prechtl de Hernandez, C. G., Beaver, J. D., Muhammed, K., Croese, C., Bell, G., et al. (2009). Fasting biases brain reward systems towards high-calorie foods. European Journal of Neuroscience, 30(8), 1625–1635.CrossRefPubMedGoogle Scholar
  30. Green, E., Jacobson, A., Haase, L., & Murphy, C. (2015). Neural correlates of taste and pleasantness evaluation in the metabolic syndrome. Brain Research, 1620, 57–71.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Gu, H., Salmeron, B. J., Ross, T. J., Geng, X., Zhan, W., Stein, E. A., et al. (2010). Mesocorticolimbic circuits are impaired in chronic cocaine users as demonstrated by resting-state functional connectivity. NeuroImage, 53(2), 593–601. doi: 10.1016/j.neuroimage.2010.06.066.CrossRefPubMedPubMedCentralGoogle Scholar
  32. Haase, L., Cerf-Ducastel, B., & Murphy, C. (2009). Cortical activation in response to pure taste stimuli during the physiological states of hunger and satiety. NeuroImage, 44(3), 1008–1021.CrossRefPubMedGoogle Scholar
  33. Harden, C. J., Corfe, B. M., Richardson, J. C., Dettmar, P. W., & Paxman, J. R. (2009). Body mass index and age affect Three-Factor Eating Questionnaire scores in male subjects. Nutrition Research, 29(6), 379–382. doi: 10.1016/j.nutres.2009.04.001.CrossRefPubMedGoogle Scholar
  34. Hare, T. A., Camerer, C. F., & Rangel, A. (2009). Self-control in decision-making involves modulation of the vmPFC valuation system. Science, 324(5927), 646–648. doi: 10.1126/science.1168450.CrossRefPubMedGoogle Scholar
  35. Hays, N. P., Bathalon, G. P., McCrory, M. A., Roubenoff, R., Lipman, R., & Roberts, S. B. (2002). Eating behavior correlates of adult weight gain and obesity in healthy women aged 55–65 y. The American Journal of Clinical Nutrition, 75(3), 476–483.PubMedGoogle Scholar
  36. Hays, N. P., Bathalon, G. P., Roubenoff, R., McCrory, M. A., & Roberts, S. B. (2006). Eating Behavior and Weight Change in Healthy Postmenopausal Women: Results of a 4-Year Longitudinal Study. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 61(6), 608–615.CrossRefGoogle Scholar
  37. Hinkle, W., Cordell, M., Leibel, R., Rosenbaum, M., & Hirsch, J. (2013). Effects of Reduced Weight Maintenance and Leptin Repletion on Functional Connectivity of the Hypothalamus in Obese Humans. PloS One, 8(3), e59114. doi: 10.1371/journal.pone.0059114.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Hinton, E. C., Parkinson, J. A., Holland, A. J., Arana, F. S., C. Roberts, A., & Owen, A. M. (2004). Neural contributions to the motivational control of appetite in humans. European Journal of Neuroscience, 20(5), 1411–1418, doi: 10.1111/j.1460-9568.2004.03589.x.
  39. Hon, N., Epstein, R. A., Owen, A. M., & Duncan, J. (2006). Frontoparietal activity with minimal decision and control. The Journal of Neuroscience, 26(38), 9805–9809, doi: 10.1523/jneurosci.3165-06.2006.
  40. Kelley, A. E., Baldo, B. A., & Pratt, W. E. (2005). A proposed hypothalamic–thalamic–striatal axis for the integration of energy balance, arousal, and food reward. The Journal of Comparative Neurology, 493(1), 72–85. doi: 10.1002/cne.20769.CrossRefPubMedGoogle Scholar
  41. Kenny, P. J. (2011). Reward Mechanisms in Obesity: New Insights and Future Directions. Neuron, 69(4), 664–679.CrossRefPubMedPubMedCentralGoogle Scholar
  42. Khazaal, Y., Billieux, J., Fresard, E., Huguelet, P., Van der Linden, M., & Zullino, D. (2010). A measure of dysfunctional eating-related cognitions in people with psychotic disorders. Psychiatric Quarterly, 81(1), 49–56.CrossRefPubMedGoogle Scholar
  43. Killgore, W. D., & Yurgelun-Todd, D. A. (2006). Affect modulates appetite-related brain activity to images of food. International Journal of Eating Disorders, 39(5), 357–363.CrossRefPubMedGoogle Scholar
  44. Killgore, W. D. S., Young, A. D., Femia, L. A., Bogorodzki, P., Rogowska, J., & Yurgelun-Todd, D. A. (2003). Cortical and limbic activation during viewing of high- versus low-calorie foods. NeuroImage, 19(4), 1381–1394, doi: 10.1016/S1053-8119(03)00191-5.
  45. Kishinevsky, F. I., Cox, J. E., Murdaugh, D. L., Stoeckel, L. E., Cook Iii, E. W., & Weller, R. E. (2012). fMRI reactivity on a delay discounting task predicts weight gain in obese women. Appetite, 58(2), 582–592. doi: 10.1016/j.appet.2011.11.029.CrossRefPubMedGoogle Scholar
  46. Kullmann, S., Pape, A. A., Heni, M., Ketterer, C., Schick, F., Haring, H. U., et al. (2013). Functional network connectivity underlying food processing: disturbed salience and visual processing in overweight and obese adults. Cerebral Cortex, 23(5), 1247–1256. doi: 10.1093/cercor/bhs124.CrossRefPubMedGoogle Scholar
  47. Langlois, F., Langlois, M.-F., Carpentier, A. C., Brown, C., Lemieux, S., & Hivert, M.-F. (2011). Ghrelin levels are associated with hunger as measured by the Three-Factor Eating Questionnaire in healthy young adults. Physiology & Behavior, 104(3), 373–377.CrossRefGoogle Scholar
  48. Laurenius, A., Larsson, I., Bueter, M., Melanson, K. J., Bosaeus, I., Forslund, H. B., et al. (2012). ing Roux-en-Y gastric bypass. International Journal of Obesity, 36(3), 348–355. doi: 10.1038/ijo.2011.217.CrossRefPubMedGoogle Scholar
  49. Lee, Y., Chong, M. F., Liu, J. C., Libedinsky, C., Gooley, J. J., Chen, S., et al. (2013). Dietary disinhibition modulates neural valuation of food in the fed and fasted states. The American Journal of Clinical Nutrition, 97(5), 919–925. doi: 10.3945/ajcn.112.053801.CrossRefPubMedGoogle Scholar
  50. Lemoine, S., Rossell, N., Drapeau, V., Poulain, M., Garnier, S., Sanguignol, F., et al. (2007). Effect of weight reduction on quality of life and eating behaviors in obese women. Menopause, 14(3 Pt 1), 432–440. doi: 10.1097/gme.0b013e31802e46c2.CrossRefPubMedGoogle Scholar
  51. Lindroos, A. K., Lissner, L., Mathiassen, M. E., Karlsson, J., Sullivan, M., Bengtsson, C., et al. (1997). Dietary intake in relation to restrained eating, disinhibition, and hunger in obese and nonobese Swedish women. Obesity Research, 5(3), 175–182.CrossRefPubMedGoogle Scholar
  52. Maayan, L., Hoogendoorn, C., Sweat, V., & Convit, A. (2011). Disinhibited eating in obese adolescents is associated with orbitofrontal volume reductions and executive dysfunction. Obesity (Silver Spring), 19(7), 1382–1387. doi: 10.1038/oby.2011.15.CrossRefGoogle Scholar
  53. Martin, L. E., Holsen, L. M., Chambers, R. J., Bruce, A. S., Brooks, W. M., Zarcone, J. R., et al. (2010). Neural Mechanisms Associated With Food Motivation in Obese and Healthy Weight Adults. Obesity, 18(2), 254–260. doi: 10.1038/oby.2009.220.CrossRefPubMedGoogle Scholar
  54. Matthews, S. C., Paulus, M. P., Simmons, A. N., Nelesen, R. A., & Dimsdale, J. E. (2004). Functional subdivisions within anterior cingulate cortex and their relationship to autonomic nervous system function. NeuroImage, 22(3), 1151–1156. doi: 10.1016/j.neuroimage.2004.03.005.CrossRefPubMedGoogle Scholar
  55. Molnar-Szakacs, I., Iacoboni, M., Koski, L., & Mazziotta, J. C. (2005). Functional Segregation within Pars Opercularis of the Inferior Frontal Gyrus: Evidence from fMRI Studies of Imitation and Action Observation. Cerebral Cortex, 15(7), 986–994. doi: 10.1093/cercor/bhh199.CrossRefPubMedGoogle Scholar
  56. Nooner, K. B., Colcombe, S., Tobe, R., Mennes, M., Benedict, M., Moreno, A., et al. (2012). The NKI-Rockland Sample: A Model for Accelerating the Pace of Discovery Science in Psychiatry. [Review]. Frontiers in Neuroscience, 6, doi: 10.3389/fnins.2012.00152.
  57. Ochner, C. N., Laferrère, B., Afifi, L., Atalayer, D., Geliebter, A., & Teixeira, J. (2012). Neural responsivity to food cues in fasted and fed states pre and post gastric bypass surgery. Neuroscience Research, 74(2), 138–143. doi: 10.1016/j.neures.2012.08.002.CrossRefPubMedPubMedCentralGoogle Scholar
  58. Piech, R. M., Lewis, J., Parkinson, C. H., Owen, A. M., Roberts, A. C., Downing, P. E., et al. (2009). Neural correlates of appetite and hunger-related evaluative judgments. PloS One, 4(8), e6581. doi: 10.1371/journal.pone.0006581.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Provencher, V., Drapeau, V., Tremblay, A., Despres, J. P., & Lemieux, S. (2003). Eating behaviors and indexes of body composition in men and women from the Quebec family study. Obesity Research, 11(6), 783–792. doi: 10.1038/oby.2003.109.CrossRefPubMedGoogle Scholar
  60. Riou, M.-È., Doucet, É., Provencher, V., Weisnagel, S. J., Piché, M.-È., Dubé, M.-C., et al. (2011). Influence of physical activity participation on the associations between eating behaviour traits and body mass index in healthy postmenopausal women. Journal of Obesity, 2011, 9. doi: 10.1155/2011/465710.CrossRefGoogle Scholar
  61. Rolls, E. T. (2004). The functions of the orbitofrontal cortex. Brain and Cognition, 55(1), 11–29. doi: 10.1016/S0278-2626(03)00277-X.CrossRefPubMedGoogle Scholar
  62. Rolls, E. T. (2005). Taste, olfactory, and food texture processing in the brain, and the control of food intake. Physiology & Behavior, 85(1), 45–56.CrossRefGoogle Scholar
  63. Rothemund, Y., Preuschhof, C., Bohner, G., Bauknecht, H.-C., Klingebiel, R., Flor, H., et al. (2007). Differential activation of the dorsal striatum by high-calorie visual food stimuli in obese individuals. NeuroImage, 37(2), 410–421. doi: 10.1016/j.neuroimage.2007.05.008.CrossRefPubMedGoogle Scholar
  64. Santel, S., Baving, L., Krauel, K., Münte, T. F., & Rotte, M. (2006). Hunger and satiety in anorexia nervosa: fMRI during cognitive processing of food pictures. Brain Research, 1114(1), 138–148. doi: 10.1016/j.brainres.2006.07.045.CrossRefPubMedGoogle Scholar
  65. Scharmüller, W., Übel, S., Ebner, F., & Schienle, A. (2012). Appetite regulation during food cue exposure: a comparison of normal-weight and obese women. Neuroscience Letters, 518(2), 106–110. doi: 10.1016/j.neulet.2012.04.063.CrossRefPubMedGoogle Scholar
  66. Siep, N., Roefs, A., Roebroeck, A., Havermans, R., Bonte, M. L., & Jansen, A. (2009). Hunger is the best spice: an fMRI study of the effects of attention, hunger and calorie content on food reward processing in the amygdala and orbitofrontal cortex. Behavioural Brain Research, 198(1), 149–158. doi: 10.1016/j.bbr.2008.10.035.CrossRefPubMedGoogle Scholar
  67. Stunkard, A. J., & Messick, S. (1985). The three-factor eating questionnaire to measure dietary restraint, disinhibition and hunger. Journal of Psychosomatic Research, 29(1), 71–83.CrossRefPubMedGoogle Scholar
  68. Swick, D., Ashley, V., & Turken, A. U. (2008). Left inferior frontal gyrus is critical for response inhibition. BMC Neuroscience, 9, 102. doi: 10.1186/1471-2202-9-102.CrossRefPubMedPubMedCentralGoogle Scholar
  69. Tang, D. W., Fellows, L. K., Small, D. M., & Dagher, A. (2012). Food and drug cues activate similar brain regions: a meta-analysis of functional MRI studies. Physiology & Behavior, 106(3), 317–324. doi: 10.1016/j.physbeh.2012.03.009.CrossRefGoogle Scholar
  70. Tataranni, P. A., Gautier, J.-F., Chen, K., Uecker, A., Bandy, D., Salbe, A. D., et al. (1999). Neuroanatomical correlates of hunger and satiation in humans using positron emission tomography. Proceedings of the National Academy of Sciences, 96(8), 4569–4574. doi: 10.1073/pnas.96.8.4569.CrossRefGoogle Scholar
  71. Tomasi, D., Wang, G.-J., Wang, R., Backus, W., Geliebter, A., Telang, F., et al. (2009). Association of body mass and brain activation during gastric distention: implications for obesity. PloS One, 4(8), e6847. doi: 10.1371/journal.pone.0006847.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Vaidya, C. J., & Gordon, E. M. (2013). Phenotypic variability in resting-state functional connectivity: current status. Brain Connectivity, 3(2), 99–120. doi: 10.1089/brain.2012.0110.CrossRefPubMedPubMedCentralGoogle Scholar
  73. Volkow, N. D., & Fowler, J. S. (2000). Addiction, a disease of compulsion and drive: involvement of the orbitofrontal cortex. Cerebral Cortex, 10(3), 318–325. doi: 10.1093/cercor/10.3.318.CrossRefPubMedGoogle Scholar
  74. Walsh, B. T., Wilson, G. T., Loeb, K. L., Devlin, M. J., Pike, K. M., Roose, S. P., et al. (1997). Medication and psychotherapy in the treatment of bulimia nervosa. American Journal of Psychiatry, 154(4), 523–531.CrossRefPubMedGoogle Scholar
  75. Westenhoefer, J., Stunkard, A. J., & Pudel, V. (1999). Validation of the flexible and rigid control dimensions of dietary restraint. International Journal of Eating Disorders, 26(1), 53–64. doi: 10.1002/(SICI)1098-108X(199907)26:1<53::AID-EAT7>3.0.CO;2-N.CrossRefPubMedGoogle Scholar
  76. Weston, C. S. (2012). Another major function of the anterior cingulate cortex: the representation of requirements. Neuroscience and Biobehavioral Reviews, 36(1), 90–110. doi: 10.1016/j.neubiorev.2011.04.014.CrossRefPubMedGoogle Scholar
  77. Williamson, D. A., Martin, C. K., York-Crowe, E., Anton, S. D., Redman, L. M., Han, H., et al. (2007). Measurement of dietary restraint: validity tests of four questionnaires. Appetite, 48(2), 183–192. doi: 10.1016/j.appet.2006.08.066.CrossRefPubMedGoogle Scholar
  78. Wing, R. R., & Phelan, S. (2005). Long-term weight loss maintenance. The American Journal of Clinical Nutrition, 82(1), 222S–225S.PubMedGoogle Scholar
  79. Yu-Feng, Z., Yong, H., Chao-Zhe, Z., Qing-Jiu, C., Man-Qiu, S., Meng, L., et al. (2007). Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI. Brain and Development, 29(2), 83–91. doi: 10.1016/j.braindev.2006.07.002.CrossRefGoogle Scholar
  80. Zou, Q., Ross, T. J., Gu, H., Geng, X., Zuo, X.-N., Hong, L. E., et al. (2013). Intrinsic resting-state activity predicts working memory brain activation and behavioral performance. Human Brain Mapping, 34(12), 3204–3215. doi: 10.1002/hbm.22136.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Jizheng Zhao
    • 1
    • 2
  • Mintong Li
    • 1
  • Yi Zhang
    • 2
  • Huaibo Song
    • 1
  • Karen M. von Deneen
    • 2
  • Yinggang Shi
    • 1
  • Yijun Liu
    • 3
    • 4
  • Dongjian He
    • 1
  1. 1.College of Mechanical and Electronic EngineeringNorthwest A&F UniversityYangling ShaanxiChina
  2. 2.School of Life Science and TechnologyXidian UniversityXi’anChina
  3. 3.Department of Psychiatry & McKnight Brain InstituteUniversity of FloridaGainesvilleUSA
  4. 4.Department of PsychologySouthwest UniversityChongqingChina

Personalised recommendations