Skip to main content
Log in

A lateralized top-down network for visuospatial attention and neglect

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

The lateralization of visuospatial attention has been well investigated and demonstrated to be primarily resulting from unbalanced interaction between interhemispheric fronto-parietal networks in previous studies. Many recent studies of top-down attention have reported the neural signatures of its effects within visual cortex and identified its causal basis. However, the relationship between top-down networks and asymmetric visuospatial attention has not been well studied. In the current study, we aimed to explore the relationship between top-down connectivity and asymmetric visuospatial ability by using repetitive transcranial magnetic stimulation (rTMS) and resting-state functional connectivity (RSFC) analyses. We used rTMS and RSFC to model the virtual lesion to assess the behavioral performances in visuospatial attention shifting and to identify the behavior-related top-down functional connectivities, respectively. Furthermore, we also investigated the top-down connectivity in neglect patients to validate the RSFC findings. RSFC analyses in healthy subjects and neglect patients consistently revealed that asymmetric visuospatial ability and visuospatial neglect were closely related to the bias of top-down functional connectivity between posterior superior parietal lobule (SPL) and V1. Our findings indicate that stronger top-down connectivity has stronger dominance on its corresponding visual field. We argue that an asymmetric top-down network may represent a possible neurophysiological substrate for the ongoing functional asymmetry of visuospatial attention, and its interhemispheric unbalanced interaction could contribute to the clinical manifestations of visuospatial neglect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ashbridge, E., Walsh, V., & Cowey, A. (1997). Temporal aspects of visual search studied by transcranial magnetic stimulation. Neuropsychologia, 35(8), 1121–1131.

    Article  CAS  PubMed  Google Scholar 

  • Baluch, F., & Itti, L. (2011). Mechanisms of top-down attention. Trends in Neurosciences, 34(4), 210–224.

    Article  CAS  PubMed  Google Scholar 

  • Bartolomeo, P., Thiebaut de Schotten, M., & Chica, A. B. (2012). Brain networks of visuospatial attention and their disruption in visual neglect. Frontiers in Human Neuroscience, 6, 110.

    PubMed  PubMed Central  Google Scholar 

  • Boroojerdi, B., Prager, A., Muellbacher, W., & Cohen, L. G. (2000). Reduction of human visual cortex excitability using 1-Hz transcranial magnetic stimulation. Neurology, 54(7), 1529–1531.

    Article  CAS  PubMed  Google Scholar 

  • Boynton, G. M. (2011). Spikes, BOLD, attention, and awareness: a comparison of electrophysiological and fMRI signals in V1. Journal of Vision, 11(5), 12.

    Article  PubMed Central  Google Scholar 

  • Buffalo, E. A., Fries, P., Landman, R., Liang, H., & Desimone, R. (2010). A backward progression of attentional effects in the ventral stream. Proceedings of the National Academy of Sciences of the United States of America, 107(1), 361–365.

    Article  CAS  PubMed  Google Scholar 

  • Chen, R., Classen, J., Gerloff, C., Celnik, P., Wassermann, E. M., Hallett, M., & Cohen, L. G. (1997). Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology, 48(5), 1398–1403.

    Article  CAS  PubMed  Google Scholar 

  • Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215.

    Article  CAS  PubMed  Google Scholar 

  • Corbetta, M., & Shulman, G. L. (2011). Spatial neglect and attention networks. Annual Review of Neuroscience, 34, 569–599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbetta, M., Miezin, F. M., Shulman, G. L., & Petersen, S. E. (1993). A PET study of visuospatial attention. Journal of Neuroscience, 13(3), 1202–1226.

    CAS  PubMed  Google Scholar 

  • Corbetta, M., Shulman, G. L., Miezin, F. M., & Petersen, S. E. (1995). Superior parietal cortex activation during spatial attention shifts and visual feature conjunction. Science, 270(5237), 802–805.

    Article  CAS  PubMed  Google Scholar 

  • Corbetta, M., Kincade, M. J., Lewis, C., Snyder, A. Z., & Sapir, A. (2005). Neural basis and recovery of spatial attention deficits in spatial neglect. Nature Neuroscience, 8(11), 1603–1610.

    Article  CAS  PubMed  Google Scholar 

  • Cutrell, E. B., & Marrocco, R. T. (2002). Electrical microstimulation of primate posterior parietal cortex initiates orienting and alerting components of covert attention. Experimental Brain Research, 144(1), 103–113.

    Article  CAS  PubMed  Google Scholar 

  • Driver, J., & Mattingley, J. B. (1998). Parietal neglect and visual awareness. Nature Neuroscience, 1(1), 17–22.

    Article  CAS  PubMed  Google Scholar 

  • Du, X., Chen, L., & Zhou, K. (2012). The role of the left posterior parietal lobule in top-down modulation on space-based attention: a transcranial magnetic stimulation study. Human Brain Mapping, 33(10), 2477–2486.

    Article  PubMed  Google Scholar 

  • Eickhoff, S. B., & Grefkes, C. (2011). Approaches for the integrated analysis of structure, function and connectivity of the human brain. Clinical EEG and Neuroscience, 42(2), 107–121.

    Article  PubMed  Google Scholar 

  • Eickhoff, S. B., Stephan, K. E., Mohlberg, H., Grefkes, C., Fink, G. R., Amunts, K., & Zilles, K. (2005). A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. NeuroImage, 25(4), 1325–1335.

    Article  PubMed  Google Scholar 

  • Fang, F., Boyaci, H., Kersten, D., & Murray, S. O. (2008). Attention-dependent representation of a size illusion in human V1. Current Biology, 18(21), 1707–1712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8(9), 700–711.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert, C. D., & Li, W. (2013). Top-down influences on visual processing. Nature Reviews Neuroscience, 14(5), 350–363.

    Article  CAS  PubMed  Google Scholar 

  • Gregoriou, G. G., Rossi, A. F., Ungerleider, L. G., & Desimone, R. (2014). Lesions of prefrontal cortex reduce attentional modulation of neuronal responses and synchrony in V4. Nature Neuroscience, 17(7), 1003–1011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, B. J., Snyder, A. Z., Vincent, J. L., Epstein, A., Shulman, G. L., & Corbetta, M. (2007). Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron, 53(6), 905–918.

    Article  CAS  PubMed  Google Scholar 

  • Heilman, K. M., & Van Den Abell, T. (1980). Right hemisphere dominance for attention: the mechanism underlying hemispheric asymmetries of inattention (neglect). Neurology, 30(3), 327–330.

    Article  CAS  PubMed  Google Scholar 

  • Hilgetag, C. C., Theoret, H., & Pascual-Leone, A. (2001). Enhanced visual spatial attention ipsilateral to rTMS-induced ‘virtual lesions’ of human parietal cortex. Nature Neuroscience, 4(9), 953–957.

    Article  CAS  PubMed  Google Scholar 

  • Hopfinger, J. B., Buonocore, M. H., & Mangun, G. R. (2000). The neural mechanisms of top-down attentional control. Nature Neuroscience, 3(3), 284–291.

    Article  CAS  PubMed  Google Scholar 

  • Jin, Y., & Hilgetag, C. C. (2008). Perturbation of visuospatial attention by high-frequency offline rTMS. Experimental Brain Research, 189(1), 121–128.

    Article  PubMed  Google Scholar 

  • Kastner, S., & Ungerleider, L. G. (2000). Mechanisms of visual attention in the human cortex. Annual Review of Neuroscience, 23, 315–341.

    Article  CAS  PubMed  Google Scholar 

  • Kastner, S., De Weerd, P., Desimone, R., & Ungerleider, L. G. (1998). Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. Science, 282(5386), 108–111.

    Article  CAS  PubMed  Google Scholar 

  • Kastner, S., Pinsk, M. A., De Weerd, P., Desimone, R., & Ungerleider, L. G. (1999). Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron, 22(4), 751–761.

    Article  CAS  PubMed  Google Scholar 

  • Kelley, T. A., Serences, J. T., Giesbrecht, B., & Yantis, S. (2008). Cortical mechanisms for shifting and holding visuospatial attention. Cerebral Cortex, 18(1), 114–125.

    Article  PubMed  Google Scholar 

  • Kinsbourne, M. (1977). Hemi-neglect and hemisphere rivalry. Advances in Neurology, 18, 41–49.

    CAS  PubMed  Google Scholar 

  • Kinsbourne M (1993) Orientational bias model of unilateral neglect: evidence from attentional gradients within hemispace. Unilateral neglect: Clinical and experimental studies 63–86

  • Koch, G., Oliveri, M., Cheeran, B., Ruge, D., Lo Gerfo, E., Salerno, S., Torriero, S., Marconi, B., Mori, F., Driver, J., Rothwell, J. C., & Caltagirone, C. (2008). Hyperexcitability of parietal-motor functional connections in the intact left-hemisphere of patients with neglect. Brain, 131(Pt 12), 3147–3155.

    Article  PubMed  PubMed Central  Google Scholar 

  • Koch, G., Cercignani, M., Bonni, S., Giacobbe, V., Bucchi, G., Versace, V., Caltagirone, C., & Bozzali, M. (2011). Asymmetry of parietal interhemispheric connections in humans. Journal of Neuroscience, 31(24), 8967–8975.

    Article  CAS  PubMed  Google Scholar 

  • Luck, S. J., Chelazzi, L., Hillyard, S. A., & Desimone, R. (1997). Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. Journal of Neurophysiology, 77(1), 24–42.

    CAS  PubMed  Google Scholar 

  • Lunven, M., Thiebaut De Schotten, M., Bourlon, C., Duret, C., Migliaccio, R., Rode, G., & Bartolomeo, P. (2015). White matter lesional predictors of chronic visual neglect: a longitudinal study. Brain, 138(Pt 3), 746–760.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mars, R. B., Jbabdi, S., Sallet, J., O’Reilly, J. X., Croxson, P. L., Olivier, E., Noonan, M. P., Bergmann, C., Mitchell, A. S., Baxter, M. G., Behrens, T. E., Johansen-Berg, H., Tomassini, V., Miller, K. L., & Rushworth, M. F. (2011). Diffusion-weighted imaging tractography-based parcellation of the human parietal cortex and comparison with human and macaque resting-state functional connectivity. Journal of Neuroscience, 31(11), 4087–4100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mesulam, M. M. (1981). A cortical network for directed attention and unilateral neglect. Annals of Neurology, 10(4), 309–325.

    Article  CAS  PubMed  Google Scholar 

  • Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.

    Article  CAS  PubMed  Google Scholar 

  • Moore, T., & Armstrong, K. M. (2003). Selective gating of visual signals by microstimulation of frontal cortex. Nature, 421(6921), 370–373.

    Article  CAS  PubMed  Google Scholar 

  • Moran, J., & Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex. Science, 229(4715), 782–784.

    Article  CAS  PubMed  Google Scholar 

  • Motter, B. C. (1993). Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. Journal of Neurophysiology, 70(3), 909–919.

    CAS  PubMed  Google Scholar 

  • Noudoost, B., Chang, M. H., Steinmetz, N. A., & Moore, T. (2010). Top-down control of visual attention. Current Opinion in Neurobiology, 20(2), 183–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pessoa, L., Kastner, S., & Ungerleider, L. G. (2003). Neuroimaging studies of attention: from modulation of sensory processing to top-down control. Journal of Neuroscience, 23(10), 3990–3998.

    CAS  PubMed  Google Scholar 

  • Ptak, R., & Schnider, A. (2010). The dorsal attention network mediates orienting toward behaviorally relevant stimuli in spatial neglect. Journal of Neuroscience, 30(38), 12557–12565.

    Article  CAS  PubMed  Google Scholar 

  • Ramalingam, N., McManus, J. N., Li, W., & Gilbert, C. D. (2013). Top-down modulation of lateral interactions in visual cortex. Journal of Neuroscience, 33(5), 1773–1789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reynolds, J. H., & Chelazzi, L. (2004). Attentional modulation of visual processing. Annual Review of Neuroscience, 27, 611–647.

    Article  CAS  PubMed  Google Scholar 

  • Rossi, A. F., Bichot, N. P., Desimone, R., & Ungerleider, L. G. (2007). Top down attentional deficits in macaques with lesions of lateral prefrontal cortex. Journal of Neuroscience, 27(42), 11306–11314.

    Article  CAS  PubMed  Google Scholar 

  • Rushworth, M. F., Paus, T., & Sipila, P. K. (2001). Attention systems and the organization of the human parietal cortex. Journal of Neuroscience, 21(14), 5262–5271.

    CAS  PubMed  Google Scholar 

  • Schluppeck, D., Curtis, C. E., Glimcher, P. W., & Heeger, D. J. (2006). Sustained activity in topographic areas of human posterior parietal cortex during memory-guided saccades. Journal of Neuroscience, 26(19), 5098–5108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serences, J. T., & Yantis, S. (2006). Selective visual attention and perceptual coherence. Trends in Cognitive Science, 10(1), 38–45.

    Article  Google Scholar 

  • Silver, M. A., Ress, D., & Heeger, D. J. (2007). Neural correlates of sustained spatial attention in human early visual cortex. Journal of Neurophysiology, 97(1), 229–237.

    Article  PubMed  Google Scholar 

  • Steinmetz, H. (1996). Structure, functional and cerebral asymmetry: in vivo morphometry of the planum temporale. Neuroscience and Biobehavioral Reviews, 20(4), 587–591.

    Article  CAS  PubMed  Google Scholar 

  • Stone, S. P., Halligan, P. W., & Greenwood, R. J. (1993). The incidence of neglect phenomena and related disorders in patients with an acute right or left hemisphere stroke. Age and Ageing, 22(1), 46–52.

    Article  CAS  PubMed  Google Scholar 

  • Szczepanski, S. M., Konen, C. S., & Kastner, S. (2010). Mechanisms of spatial attention control in frontal and parietal cortex. Journal of Neuroscience, 30(1), 148–160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thiebaut de Schotten, M., Urbanski, M., Duffau, H., Volle, E., Levy, R., Dubois, B., & Bartolomeo, P. (2005). Direct evidence for a parietal-frontal pathway subserving spatial awareness in humans. Science, 309(5744), 2226–2228.

    Article  CAS  PubMed  Google Scholar 

  • Thiebaut de Schotten, M., Dell’Acqua, F., Forkel, S. J., Simmons, A., Vergani, F., Murphy, D. G., & Catani, M. (2011). A lateralized brain network for visuospatial attention. Nature Neuroscience, 14(10), 1245–1246.

    Article  CAS  PubMed  Google Scholar 

  • Tomasi, D., & Volkow, N. D. (2012). Laterality patterns of brain functional connectivity: gender effects. Cerebral Cortex, 22(6), 1455–1462.

    Article  PubMed  PubMed Central  Google Scholar 

  • Umarova, R. M., Reisert, M., Beier, T. U., Kiselev, V. G., Kloppel, S., Kaller, C. P., Glauche, V., Mader, I., Beume, L., Hennig, J., & Weiller, C. (2014). Attention-network specific alterations of structural connectivity in the undamaged white matter in acute neglect. Human Brain Mapping, 35(9), 4678–4692.

    Article  PubMed  Google Scholar 

  • Vallar, G., Bottini, G., & Paulesu, E. (2003). Neglect syndromes: the role of the parietal cortex. Advances in Neurology, 93, 293–319.

    PubMed  Google Scholar 

  • Vandenberghe, R., Duncan, J., Dupont, P., Ward, R., Poline, J. B., Bormans, G., Michiels, J., Mortelmans, L., & Orban, G. A. (1997). Attention to one or two features in left or right visual field: a positron emission tomography study. Journal of Neuroscience, 17(10), 3739–3750.

    CAS  PubMed  Google Scholar 

  • Vandenberghe, R., Gitelman, D. R., Parrish, T. B., & Mesulam, M. M. (2001). Functional specificity of superior parietal mediation of spatial shifting. NeuroImage, 14(3), 661–673.

    Article  CAS  PubMed  Google Scholar 

  • Verdon, V., Schwartz, S., Lovblad, K. O., Hauert, C. A., & Vuilleumier, P. (2010). Neuroanatomy of hemispatial neglect and its functional components: a study using voxel-based lesion-symptom mapping. Brain, 133(Pt 3), 880–894.

    Article  PubMed  Google Scholar 

  • Wang, J., Yang, Y., Fan, L., Xu, J., Li, C., Liu, Y., Fox, P. T., Eickhoff, S. B., Yu, C., & Jiang, T. (2015). Convergent functional architecture of the superior parietal lobule unraveled with multimodal neuroimaging approaches. Human Brain Mapping, 36, 238–257.

    Article  PubMed  Google Scholar 

  • Wardak, C., Olivier, E., & Duhamel, J. R. (2004). A deficit in covert attention after parietal cortex inactivation in the monkey. Neuron, 42(3), 501–508.

    Article  CAS  PubMed  Google Scholar 

  • Yantis, S., & Serences, J. T. (2003). Cortical mechanisms of space-based and object-based attentional control. Current Opinion in Neurobiology, 13(2), 187–193.

    Article  CAS  PubMed  Google Scholar 

  • Yantis, S., Schwarzbach, J., Serences, J. T., Carlson, R. L., Steinmetz, M. A., Pekar, J. J., & Courtney, S. M. (2002). Transient neural activity in human parietal cortex during spatial attention shifts. Nature Neuroscience, 5(10), 995–1002.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., Zhaoping, L., Zhou, T., & Fang, F. (2012). Neural activities in v1 create a bottom-up saliency map. Neuron, 73(1), 183–192.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (973 program; 2011CB707801), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB02030300), and the Natural Science Foundation of China (31500867, 91132301, 81100806).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kai Wang or Tianzi Jiang.

Ethics declarations

Conflict of interest

Jiaojian Wang, Yanghua Tian, Mengzhu Wang, Long Cao, Huawang Wu, Kai Wang, and Tianzi Jiang declare that they have no conflicts of interest.

Ethical approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Jiaojian Wang and Yanghua Tian contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Tian, Y., Wang, M. et al. A lateralized top-down network for visuospatial attention and neglect. Brain Imaging and Behavior 10, 1029–1037 (2016). https://doi.org/10.1007/s11682-015-9460-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-015-9460-y

Keywords

Navigation