Brain Imaging and Behavior

, Volume 10, Issue 3, pp 739–749 | Cite as

Discriminative multi-task feature selection for multi-modality classification of Alzheimer’s disease

  • Tingting Ye
  • Chen Zu
  • Biao Jie
  • Dinggang ShenEmail author
  • Daoqiang ZhangEmail author
  • the Alzheimer’s Disease Neuroimaging Initiative
Original Research


Recently, multi-task based feature selection methods have been used in multi-modality based classification of Alzheimer’s disease (AD) and its prodromal stage, i.e., mild cognitive impairment (MCI). However, in traditional multi-task feature selection methods, some useful discriminative information among subjects is usually not well mined for further improving the subsequent classification performance. Accordingly, in this paper, we propose a discriminative multi-task feature selection method to select the most discriminative features for multi-modality based classification of AD/MCI. Specifically, for each modality, we train a linear regression model using the corresponding modality of data, and further enforce the group-sparsity regularization on weights of those regression models for joint selection of common features across multiple modalities. Furthermore, we propose a discriminative regularization term based on the intra-class and inter-class Laplacian matrices to better use the discriminative information among subjects. To evaluate our proposed method, we perform extensive experiments on 202 subjects, including 51 AD patients, 99 MCI patients, and 52 healthy controls (HC), from the baseline MRI and FDG-PET image data of the Alzheimer’s Disease Neuroimaging Initiative (ADNI). The experimental results show that our proposed method not only improves the classification performance, but also has potential to discover the disease-related biomarkers useful for diagnosis of disease, along with the comparison to several state-of-the-art methods for multi-modality based AD/MCI classification.


Alzheimer’s disease Multi-task feature selection Multi-modality based classification Discriminative regularization Group-sparsity regularizer 



This work is supported in part by National Natural Science Foundation of China (Nos. 61422204, 61473149), the Jiangsu Natural Science Foundation for Distinguished Young Scholar (No. BK20130034), the Specialized Research Fund for the Doctoral Program of Higher Education (No. 20123218110009), the NUAA Fundamental Research Funds (No. NE2013105), and NIH grants (EB006733, EB008374, EB009634, and AG041721).

For this project, the dataset we collected and used was provided by the Alzheimer’s Disease Neuroimaging Initiative (ADNI) (National Institutes of Health Grant U01 AG024904). ADNI is funded by non-profit partners the Alzheimer’s Association and Alzheimer’s Drug Discovery Foundation and the National Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, and through generous contributions from the following: Abbott, AstraZeneca AB, Bayer Schering Pharma AG, Bristol-Myers Squibb, Eisai Global Clinical Development, Elan Corporation, Genentech, GE Healthcare, GlaxoSmithKline, Innogenetics, Johnson and Johnson, Eli Lilly and Co., Medpace, Inc., Merck and Co., Inc., Novartis AG, Pfizer Inc, F. Hoffman-La Roche, Schering-Plough, Synarc, Inc., with participation from the U.S. Food and Drug Administration. What’s more, Private sector contributions to ADNI are facilitated by the Foundation for the National Institutes of Health ( The Northern California Institute for Education and Research is the grantee organization, as well as the Alzheimer’s Disease Cooperative Study at the University of California, San Diego coordinate the study. ADNI data are disseminated by the Laboratory for Neuron Imaging at the University of California, Los Angeles.

Conflicts of interest

The authors declare that they have no conflict of interest.


  1. Apostolova, L. G., Hwang, K. S., Andrawis, J. P., Green, A. E., Babakchanian, S., Morra, J. H., et al. (2010). 3D PIB and CSF biomarker associations with hippocampal atrophy in ADNI subjects. Neurobiology of Aging, 31, 1284–1303.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Berchtold, N. C., & Cotman, C. W. (1998). Evolution in the conceptualization of dementia and Alzheimer’s disease: greco-roman period to the 1960s. Neurobiology of Aging, 19, 173–189.CrossRefPubMedGoogle Scholar
  3. Bouwman, F., Schoonenboom, S., van Der Flier, W., Van Elk, E., Kok, A., Barkhof, F., et al. (2007). CSF biomarkers and medial temporal lobe atrophy predict dementia in mild cognitive impairment. Neurobiology of Aging, 28, 1070–1074.CrossRefPubMedGoogle Scholar
  4. Brookmeyer, R., Johnson, E., Ziegler-Graham, K., & Arrighi, H. M. (2007). Forecasting the global burden of Alzheimer’s disease. Alzheimer’s & Dementia, 3, 186–191.CrossRefGoogle Scholar
  5. Cai, D., He, X., Zhou, K., Han, J., Bao, H. (2007). Locality Sensitive Discriminant Analysis, in IJCAI, pp. 708–713.Google Scholar
  6. Chang, C.-C., & Lin, C.-J. (2011). LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST), 2, 27.Google Scholar
  7. Chen, X., Pan, W., Kwok, J.T., Carbonell, J.G. (2009). Accelerated gradient method for multi-task sparse learning problem. in Data Mining, 2009. ICDM’09. Ninth IEEE International Conference on, pp. 746–751.Google Scholar
  8. Cheng, B., Zhang, D., Shen, D. (2012). Domain transfer learning for MCI conversion prediction, in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2012, ed: Springer, pp. 82–90.Google Scholar
  9. Dai, W., Lopez, O. L., Carmichael, O. T., Becker, J. T., Kuller, L. H., & Gach, H. M. (2009). Mild cognitive impairment and Alzheimer disease: patterns of altered cerebral blood flow at MR imaging 1. Radiology, 250, 856–866.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Davatzikos, C., Bhatt, P., Shaw, L. M., Batmanghelich, K. N., & Trojanowski, J. Q. (2011). Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification. Neurobiology of Aging, 32, 2322. e19–2322. e27.CrossRefPubMedGoogle Scholar
  11. De Leon, M., Mosconi, L., Li, J., De Santi, S., Yao, Y., Tsui, W., et al. (2007). Longitudinal CSF isoprostane and MRI atrophy in the progression to AD. Journal of Neurology, 254, 1666–1675.CrossRefPubMedGoogle Scholar
  12. De Santi, S., de Leon, M. J., Rusinek, H., Convit, A., Tarshish, C. Y., Roche, A., et al. (2001). Hippocampal formation glucose metabolism and volume losses in MCI and AD. Neurobiology of Aging, 22, 529–539.CrossRefPubMedGoogle Scholar
  13. Del Sole, A., Clerici, F., Chiti, A., Lecchi, M., Mariani, C., Maggiore, L., et al. (2008). Individual cerebral metabolic deficits in Alzheimer’s disease and amnestic mild cognitive impairment: an FDG PET study. European Journal of Nuclear Medicine and Molecular Imaging, 35, 1357–1366.CrossRefPubMedGoogle Scholar
  14. Fan, Y., Batmanghelich, N., Clark, C. M., & Davatzikos, C. (2008). Spatial patterns of brain atrophy in MCI patients, identified via high-dimensional pattern classification, predict subsequent cognitive decline. NeuroImage, 39, 1731–1743.CrossRefPubMedGoogle Scholar
  15. Fellgiebel, A., Scheurich, A., Bartenstein, P., & Müller, M. J. (2007). FDG-PET and CSF phospho-tau for prediction of cognitive decline in mild cognitive impairment. Psychiatry Research: Neuroimaging, 155, 167–171.CrossRefPubMedGoogle Scholar
  16. Fjell, A. M., Walhovd, K. B., Fennema-Notestine, C., McEvoy, L. K., Hagler, D. J., Holland, D., et al. (2010). CSF biomarkers in prediction of cerebral and clinical change in mild cognitive impairment and Alzheimer’s disease. The Journal of Neuroscience, 30, 2088–2101.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Foster, N. L., Heidebrink, J. L., Clark, C. M., Jagust, W. J., Arnold, S. E., Barbas, N. R., et al. (2007). FDG-PET improves accuracy in distinguishing frontotemporal dementia and Alzheimer’s disease. Brain, 130, 2616–2635.CrossRefPubMedGoogle Scholar
  18. Gauthier, S., Reisberg, B., Zaudig, M., Petersen, R. C., Ritchie, K., Broich, K., et al. (2006). Mild cognitive impairment. The Lancet, 367, 1262–1270.CrossRefGoogle Scholar
  19. Gray, K. R., Aljabar, P., Heckemann, R. A., Hammers, A., & Rueckert, D. (2013). Random forest-based similarity measures for multi-modal classification of Alzheimer’s disease. NeuroImage, 65, 167–175.CrossRefPubMedGoogle Scholar
  20. Higdon, R., Foster, N. L., Koeppe, R. A., DeCarli, C. S., Jagust, W. J., Clark, C. M., et al. (2004). A comparison of classification methods for differentiating fronto‐temporal dementia from Alzheimer’s disease using FDG‐PET imaging. Statistics in Medicine, 23, 315–326.CrossRefPubMedGoogle Scholar
  21. Hinrichs, C., Singh, V., Mukherjee, L., Xu, G., Chung, M. K., & Johnson, S. C. (2009). Spatially augmented LPboosting for AD classification with evaluations on the ADNI dataset. NeuroImage, 48, 138–149.CrossRefPubMedPubMedCentralGoogle Scholar
  22. Huang, S., Li, J., Ye, J., Wu, T., Chen, K., Fleisher, A. et al., (2011). Identifying Alzheimer’s Disease-Related Brain Regions from Multi-Modality Neuroimaging Data using Sparse Composite Linear Discrimination Analysis. in Advances in Neural Information Processing Systems, pp. 1431–1439.Google Scholar
  23. Hyman, B. T., Van Hoesen, G. W., Damasio, A. R., & Barnes, C. L. (1984). Alzheimer’s disease: cell-specific pathology isolates the hippocampal formation. Science, 225, 1168–1170.CrossRefPubMedGoogle Scholar
  24. Jie, B., Zhang, D., Cheng, B., Shen, D. (2013). Manifold regularized multi-task feature selection for multi-modality classification in Alzheimer’s disease, in Medical Image Computing and Computer-Assisted Intervention–MICCAI 2013, ed: Springer, pp. 275–283.Google Scholar
  25. Karas, G., Scheltens, P., Rombouts, S., van Schijndel, R., Klein, M., Jones, B., et al. (2007). Precuneus atrophy in early-onset Alzheimer’s disease: a morphometric structural MRI study. Neuroradiology, 49, 967–976.CrossRefPubMedGoogle Scholar
  26. Kira, K., & Rendell, L.A. (1992). The feature selection problem: Traditional methods and a new algorithm. in AAAI, pp. 129–134.Google Scholar
  27. Knafo, S., Venero, C., Merino‐Serrais, P., Fernaud‐Espinosa, I., Gonzalez‐Soriano, J., Ferrer, I., et al. (2009). Morphological alterations to neurons of the amygdala and impaired fear conditioning in a transgenic mouse model of Alzheimer’s disease. The Journal of Pathology, 219, 41–51.CrossRefPubMedGoogle Scholar
  28. Landau, S., Harvey, D., Madison, C., Reiman, E., Foster, N., Aisen, P., et al. (2010). Comparing predictors of conversion and decline in mild cognitive impairment. Neurology, 75, 230–238.CrossRefPubMedPubMedCentralGoogle Scholar
  29. Liu, J., & Ye, J.(2010). Efficient l1/lq norm regularization. arXiv preprint arXiv:1009.4766.Google Scholar
  30. Liu, F., Wee, C.-Y., Chen, H., & Shen, D. (2014). Inter-modality relationship constrained multi-modality multi-task feature selection for Alzheimer’s Disease and mild cognitive impairment identification. NeuroImage, 84, 466–475.CrossRefPubMedGoogle Scholar
  31. Mattsson, N., Zetterberg, H., Hansson, O., Andreasen, N., Parnetti, L., Jonsson, M., et al. (2009). CSF biomarkers and incipient Alzheimer disease in patients with mild cognitive impairment. JAMA, 302, 385–393.CrossRefPubMedGoogle Scholar
  32. McEvoy, L. K., Fennema-Notestine, C., Roddey, J. C., Hagler, D. J., Jr., Holland, D., Karow, D. S., et al. (2009). Alzheimer disease: quantitative structural neuroimaging for detection and prediction of clinical and structural changes in mild cognitive impairment 1. Radiology, 251, 195–205.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Misra, C., Fan, Y., & Davatzikos, C. (2009). Baseline and longitudinal patterns of brain atrophy in MCI patients, and their use in prediction of short-term conversion to AD: results from ADNI. NeuroImage, 44, 1415–1422.CrossRefPubMedGoogle Scholar
  34. Morris, J. C., Storandt, M., Miller, J. P., McKeel, D. W., Price, J. L., Rubin, E. H., et al. (2001). Mild cognitive impairment represents early-stage Alzheimer disease. Archives of Neurology, 58, 397–405.PubMedGoogle Scholar
  35. Ng, B., & Abugharbieh, R. (2011). Generalized sparse regularization with application to fMRI brain decoding. in Information Processing in Medical Imaging, pp. 612–623.Google Scholar
  36. Nobili, F., Salmaso, D., Morbelli, S., Girtler, N., Piccardo, A., Brugnolo, A., et al. (2008). Principal component analysis of FDG PET in amnestic MCI. European Journal of Nuclear Medicine and Molecular Imaging, 35, 2191–2202.CrossRefPubMedGoogle Scholar
  37. Petersen, R. C., Smith, G. E., Waring, S. C., Ivnik, R. J., Tangalos, E. G., & Kokmen, E. (1999). Mild cognitive impairment: clinical characterization and outcome. Archives of Neurology, 56, 303–308.CrossRefPubMedGoogle Scholar
  38. Poulin, S. P., Dautoff, R., Morris, J. C., Barrett, L. F., Dickerson, B. C., & A. s. D. N. Initiative. (2011). Amygdala atrophy is prominent in early Alzheimer’s disease and relates to symptom severity. Psychiatry Research: Neuroimaging, 194, 7–13.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Pudil, P., Novovičová, J., & Kittler, J. (1994). Floating search methods in feature selection. Pattern Recognition Letters, 15, 1119–1125.CrossRefGoogle Scholar
  40. Shaw, L. M., Vanderstichele, H., Knapik‐Czajka, M., Clark, C. M., Aisen, P. S., Petersen, R. C., et al. (2009). Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Annals of Neurology, 65, 403–413.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Solodkin, A., Chen, E. E., Hoesen, G. W., Heimer, L., Shereen, A., Kruggel, F., et al. (2013). In vivo parahippocampal white matter pathology as a biomarker of disease progression to Alzheimer’s disease. Journal of Comparative Neurology, 521, 4300–4317.CrossRefPubMedGoogle Scholar
  42. Sui, J., Adali, T., Yu, Q., Chen, J., & Calhoun, V. D. (2012). A review of multivariate methods for multimodal fusion of brain imaging data. Journal of Neuroscience Methods, 204, 68–81.CrossRefPubMedGoogle Scholar
  43. Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), pp. 267–288.Google Scholar
  44. Van Hoesen, G. W., & Hyman, B. T. (1990). Hippocampal formation: anatomy and the patterns of pathology in Alzheimer’s disease. Progress in Brain Research, 83, 445–457.CrossRefPubMedGoogle Scholar
  45. Walhovd, K., Fjell, A., Dale, A., McEvoy, L., Brewer, J., Karow, D., et al. (2010). Multi-modal imaging predicts memory performance in normal aging and cognitive decline. Neurobiology of Aging, 31, 1107–1121.CrossRefPubMedGoogle Scholar
  46. Wang, C., Stebbins, G. T., Medina, D. A., Shah, R. C., Bammer, R., & Moseley, M. E. (2012). Atrophy and dysfunction of parahippocampal white matter in mild Alzheimer’s disease. Neurobiology of Aging, 33, 43–52.CrossRefPubMedGoogle Scholar
  47. Wee, C.-Y., Yap, P.-T., Zhang, D., Denny, K., Browndyke, J. N., Potter, G. G., et al. (2012). Identification of MCI individuals using structural and functional connectivity networks. NeuroImage, 59, 2045–2056.CrossRefPubMedGoogle Scholar
  48. Xue, H., Chen, S., & Yang, Q. (2009). Discriminatively regularized least-squares classification. Pattern Recognition, 42, 93–104.CrossRefGoogle Scholar
  49. Ye, J., Chen, K., Wu, T., Li, J., Zhao, Z., Patel, R. et al. (2008). Heterogeneous data fusion for alzheimer’s disease study. in Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 1025–1033.Google Scholar
  50. Ye, J., Wu, T., Li, J., & Chen, K. (2011). Machine learning approaches for the neuroimaging study of Alzheimer’s disease. Computer, 44, 99–101.CrossRefGoogle Scholar
  51. Yuan, M., & Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 68, 49–67.CrossRefGoogle Scholar
  52. Zhang, D., Wang, Y., Zhou, L., Yuan, H., & Shen, D. (2011). Multimodal classification of Alzheimer’s disease and mild cognitive impairment. NeuroImage, 55, 856–867.CrossRefPubMedPubMedCentralGoogle Scholar
  53. Zhang, D., Shen, D., & A. s. D. N. Initiative. (2012). Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. NeuroImage, 59, 895–907.CrossRefPubMedGoogle Scholar
  54. Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society, Series B (Statistical Methodology), 67, 301–320.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Tingting Ye
    • 1
  • Chen Zu
    • 1
  • Biao Jie
    • 1
  • Dinggang Shen
    • 2
    • 3
    Email author
  • Daoqiang Zhang
    • 1
    Email author
  • the Alzheimer’s Disease Neuroimaging Initiative
    • 1
  1. 1.School of Computer Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingChina
  2. 2.Department of Radiology and BRICUniversity of North Carolina at Chapel HillChapel HillUSA
  3. 3.Department of Brain and Cognitive EngineeringKorea UniversitySeoulSouth Korea

Personalised recommendations