Skip to main content

Grey matter correlates of susceptibility to scams in community-dwelling older adults

ABSTRACT

Susceptibility to scams is a significant issue among older adults, even among those with intact cognition. Age-related changes in brain macrostructure may be associated with susceptibility to scams; however, this has yet to be explored. Based on previous work implicating frontal and temporal lobe functioning as important in decision making, we tested the hypothesis that susceptibility to scams is associated with smaller grey matter volume in frontal and temporal lobe regions in a large community-dwelling cohort of non-demented older adults. Participants (N = 327, mean age = 81.55, mean education = 15.30, 78.9 % female) completed a self-report measure used to assess susceptibility to scams and an MRI brain scan. Results indicated an inverse association between overall grey matter and susceptibility to scams in models adjusted for age, education, and sex; and in models further adjusted for cognitive function. No significant associations were observed for white matter, cerebrospinal fluid, or total brain volume. Models adjusted for age, education, and sex revealed seven clusters showing smaller grey matter in the right parahippocampal/hippocampal/fusiform, left middle temporal, left orbitofrontal, right ventromedial prefrontal, right middle temporal, right precuneus, and right dorsolateral prefrontal regions. In models further adjusted for cognitive function, results revealed three significant clusters showing smaller grey matter in the right parahippocampal/hippocampal/fusiform, right hippocampal, and right middle temporal regions. Lower grey matter concentration in specific brain regions may be associated with susceptibility to scams, even after adjusting for cognitive ability. Future research is needed to determine whether grey matter reductions in these regions may be a biomarker for susceptibility to scams in old age.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • AARP (1999). AARP poll: Nearly one in five Americans report they’ve been victimized by fraud. Washington, DC:Author.

    Google Scholar 

  • Agarwal, S., Driscoll, J. C., Gabaix, X., & Laibson, D. (2009). The age of reason: financial decisions over the lifecycle with implications for regulation. Brookings Papers on Economic Activity, 2, 51–117.

    Article  Google Scholar 

  • Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38, 95–113.

    Article  PubMed  Google Scholar 

  • Authority, F. I. R. (2013). Financial industry regulatory authority risk meter Retrieved from http://apps.finra.org/meters/1/riskmeter.aspx.

    Google Scholar 

  • Barber, B. M., & Odean, T. (2001). Boys will be boys: gender, overconfidence, and common stock investment. The Quarterly Journal of Economics, 116, 261–292.

    Article  Google Scholar 

  • Bechara, A., Damasio, H., & Damasio, A. R. (2000). Emotion, decision making, and the orbitofrontal cortex. Cerebral Cortex, 10, 295–307.

    CAS  Article  PubMed  Google Scholar 

  • Bennett, D. A., Schneider, J. A., Arvanitakis, Z., Kelly, J. F., Aggarwal, N. T., Shah, R. C., et al. (2006). Neuropathology of older person without cognitive impairment from two community-based studies. Neurology, 27, 1837–1844.

    Article  Google Scholar 

  • Bennett, D. A., Schneider, J. A., Buchman, A. S., Barnes, L. L., Boyle, P. A., & Wilson, R. S. (2012). Overview and findings from the rush memory and aging project. Current Alzheimer Research, 9(6), 646–663.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Boyle, P. A., Buchman, A. S., Barnes, L. L., & Bennett, D. A. (2010). Effect of a purpose in life on risk of incident Alzheimer’s disease and mild cognitive impairment in community-dwelling older persons. Archives of General Psychiatry, 67, 304–310.

    Article  PubMed  PubMed Central  Google Scholar 

  • Boyle, P. A., Yu, L., Wilson, R. S., Gamble, K., Buchman, A. S., & Bennett, D. A. (2012). Poor decision making is a consequence of cognitive decline among older persons without Alzheimer’s disease or mild cognitive impairment. PloS One, 7, e43647.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Buchman, A. S., Boyle, P. A., Yu, L., Shah, R. C., Wilson, R. S., & Bennett, D. A. (2012). Total daily physical activity and the risk of cognitive decline in older adults. Neurology, 78, 1323–1329.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38.

    Article  PubMed  Google Scholar 

  • Chen, Y., & Sun, Y. (2011). Age differences in financial decision-making: using simple heuristics. Educational Gerontology, 29, 627–635.

    CAS  Article  Google Scholar 

  • Cole, S., Paulson, A., & Shastry, G. K. (2014). Smart money? The effect of education on financial outcomes. The Review of Financial Studies, 27, 2022–2051.

    Article  Google Scholar 

  • Coutlee, C. G., & Huettel, S. A. (2012). The functional neuroanatomy of decision making: prefrontal control of thought and action. Brain Research, 1428, 3–12.

    CAS  Article  PubMed  Google Scholar 

  • Curiati, P. K., Tamashiro, J. H., Squarzoni, P., Duran, F. L. S., Santos, L. C., Wajngarten, M., Leite, C. C., Vallada, H., Menezes, P. R., Scazufca, M., Busatto, G. F., & Alves, T. C. T. F. (2009). Brain structural variability due to aging and gender in cognitive healthy elders: results from the Sao Paulo ageing and health study. American Journal of Neuroradiology, 30, 1850–1856.

    CAS  Article  PubMed  Google Scholar 

  • Delazer, M., Zamarian, L., Bonatti, E., Kuchukhidze, G., Koppelstater, F., Bodner, T., et al. (2010). Decision making under ambiguity and under risk in mesial temporal lobe epilepsy. Neuropsychologia, 48, 194–200.

    Article  PubMed  Google Scholar 

  • Dessin, C. L. (2000). Financial abuse of the elderly. Idaho Law Review, 36(2), 203–226.

    Google Scholar 

  • Draganski, B., Gaser, C., Kempermann, G., Kuhn, H. G., Winkler, J., Buchel, C., & May, A. (2006). Temporal and spatial dynamics of brain structure changes during extensive learning. Journal of Neuroscience, 26, 6314–6317.

    CAS  Article  PubMed  Google Scholar 

  • Fellows, L. K., & Farah, M. J. (2007). The role of the ventromedial prefrontal cortex in decision making: judgment under uncertainty or judgment per se? Cerebral Cortex, 17, 2668–2674.

    Article  Google Scholar 

  • Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N. A., Friston, K. J., & Frackowiak, R. S. J. (2001). A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage, 14, 21–36.

    CAS  Article  PubMed  Google Scholar 

  • Guitart-Masip, M., Barnes, G. R., Horner, A., Bauer, M., Dolan, R. J., & Duzel, E. (2013). Synchronization of medial temporal lobe and prefrontal rhythms in human decision making. The Journal of Neuroscience, 33, 442–451.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Jackson, S. L., & Hafemeister, T. L. (2011). Financial abuse of elderly people vs. other forms of elder abuse: Assessing their dynamics, risk factors, and societys response. Final Report Presented to the National Institute of Justice.

  • James, B. D., Boyle, P. S., Buchman, A. S., Barnes, L. L., & Bennett, D. A. (2011). Life space and risk of Alzheimer’s disease, mild cognitive impairment, and cognitive decline in old age. The American Journal of Geriatric Psychiatry, 19, 961–969.

    Article  PubMed  PubMed Central  Google Scholar 

  • James, B. D., Boyle, P. A., & Bennett, D. A. (2014). Correlates of susceptibility to scams in older adults without dementia. Journal of Elder Abuse & Neglect, 26, 107–122.

    Article  Google Scholar 

  • Kennedy, K. M., Erickson, K. I., Rodrigue, K. M., Voss, M. W., Colcombe, S. J., Kramer, A. F., et al. (2009). Age-related differences in regional grey matter volumes: a comparison of optimized voxel-based morphometry to manual volumetry. Neurobiology of Aging, 30, 1657–1676.

    Article  PubMed  Google Scholar 

  • Kennerley, S. W., Walton, M. E., Behrens, T. E. J., Buckley, M. J., & Rushworth, M. F. S. (2006). Optimal decision making and the anterior cingulate cortex. Nature Neuroscience, 9, 940–947.

    CAS  Article  PubMed  Google Scholar 

  • Krawczyk, D. C. (2002). Contributions of the prefrontal cortex to the neural basis of decision making. Neuroscience and Biobehavioral Reviews, 26, 631–664.

    Article  PubMed  Google Scholar 

  • Laibson, D. (2011). Age of reason. In Closing keynote presentation at the 23rd annual Morningstar investment conference. Chicago: IL.

    Google Scholar 

  • McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Standlan, E. (1984). Clinical diagnosis of Alzheimer’s disease: report of the NINCDS/ADRDA work group under the auspices of department of health and human services task force on Alzheimer’s disease. Neurology, 34, 939–944.

    CAS  Article  PubMed  Google Scholar 

  • Peters, J., & Buchel, C. (2010). Episodic future thinking reduces reward delay discounting through an enhancement of prefrontal-mediotemporal interactions. Neuron, 66, 138–148.

    CAS  Article  PubMed  Google Scholar 

  • Peters, J., & Buchel, C. (2012). The neural mechanisms of inter-temporal decision-making: understanding variability. Trends in Cognitive Sciences, 15, 207–239.

    Google Scholar 

  • U.S. Senate. (2005). Old Scams-New Victims: Breaking the Cycle of Victimization (109th Congress, First Session, Serial No. 109–113). Washington, DC: U.S. Government Printing Office. http://www.gpo.gov/fdsys/pkg/CHRG-109shrg25878/html/CHRG-109shrg25878.htm

  • Taki, Y., Kinomura, S., Sato, K., Goto, R., Kawashima, R., & Fukuda, H. (2011). A longitudinal study of grey matter volume decline with age and modifying factors. Neurobiology of Aging, 32, 907–915.

    Article  PubMed  Google Scholar 

  • Templeton, V. H., & Kirkman, D. N. (2007). Fraud, vulnerability, and aging. Alzheimer’s Care Today, 8(3), 265–277.

    Google Scholar 

  • Tymula, A., Rosenberg Belmaker, L. A., Ruderman, L., Glimcher, P. W., & Levy, I. (2013). Like cognitive function, decision making across the life span showed profound age-related changes. PNAS, 110(42), 17143–17148.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Volz, K. G., Schubotz, R. I., & Yves von Cramon, D. (2006). Decision-making and the frontal lobes. Current Opinion in Neurology, 19, 401–406.

    Article  PubMed  Google Scholar 

  • Wilson, R. S., Barnes, L. L., & Bennett, D. A. (2003). Assessment of lifetime participation in cognitively stimulating activities. Journal of Clinical and Experimental Psychopathology, 25, 634–642.

    Google Scholar 

  • Wilson, R. S., Boyle, P. A., Buchman, A. S., Yu, L., Arnold, S. E., & Bennett, D. A. (2011). Harm avoidance and risk of Alzheimer’s disease. Psychosomatic Medicine, 73, 690–696.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Worsley, K. (2011). Random field theory. statistical parametric mapping: the analysis of functional brain images: The Analysis of Functional Brain Images.

  • Yu, L., Boyle, P. A., Wilson, R. S., Segawa, E., Leurgans, S., De Jager, P. L., & Bennett, D. A. (2012). A random change point model for cognitive decline in Alzheimer’s disease and mild cognitive impairment. Neuroepidemiology, 39, 73–83.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by National Institute on Aging grants R01AG017917, R01AG033678, K23AG040625, the American Federation for Aging Research, and the Illinois Department of Public Health. The authors gratefully thank the Rush Memory and Aging Project staff and participants.

Disclosure statement

S. Duke Han, Patricia A. Boyle, Lei Yu, Konstantinos Arfanakis, Bryan D. James, Debra Fleischman, and David A. Bennett declare no conflicts of interests.

Ethical statement

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all patients for being included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Duke Han.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duke Han, S., Boyle, P.A., Yu, L. et al. Grey matter correlates of susceptibility to scams in community-dwelling older adults. Brain Imaging and Behavior 10, 524–532 (2016). https://doi.org/10.1007/s11682-015-9422-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-015-9422-4

Keywords

  • Scam
  • Cognition
  • Brain volumetry
  • Parahippocampus
  • Hippocampus