Brain Imaging and Behavior

, Volume 9, Issue 3, pp 421–444 | Cite as

Neuroimaging as a biomarker in symptom validity and performance validity testing

  • Erin D. BiglerEmail author
Military/Veteran TBI


How neuropsychological assessment findings are deemed valid has been a topic of numerous articles but few have addressed any role that neuroimaging studies could provide. Within military and various clinical samples of individuals undergoing neuropsychological evaluations, high levels of failure on measures of symptom validity testing (SVT) and/or performance validity testing (PVT) have been reported. Where ‘failure’ is defined as a below cut-score performance on some pre-determined set-point on a SVT/PVT measure, are such failures always indicative of invalid test findings or are there other explanations, especially based on informative neuroimaging findings? This review starts with the premise that even though the SVT/PVT task is designed to be simple and easy to perform, it nonetheless requires intact frontoparietal attention, working memory and task engagement (motivation) networks. If there is damage or pathology within any aspect of these networks as demonstrated by neuroimaging findings, the patient may perform below the cut-point as a result of the underlying damage or pathophysiology. The argument is made that neuroimaging findings should be considered as to where SVT/PVT cut-points are established and there should be much greater flexibility in SVT/PVT measures based on other personal, demographic and neuroimaging information. Several case studies are used to demonstrate these points.


Symptom validity testing Performance validity testing Effort Neuroimaging Cognitive neuroscience of effort 


  1. Allen, M. D., Bigler, E. D., Larsen, J., Goodrich-Hunsaker, N. J., & Hopkins, R. O. (2007). Functional neuroimaging evidence for high cognitive effort on the Word Memory Test in the absence of external incentives. [Case Reports]. Brain Injury, 21(13–14), 1425–1428. doi: 10.1080/02699050701769819.PubMedCrossRefGoogle Scholar
  2. Armistead-Jehle, P. (2010). Symptom validity test performance in U.S. veterans referred for evaluation of mild TBI. [Research Support, U.S. Gov’t, Non-P.H.S.]. Applied Neuropsychology, 17(1), 52–59. doi: 10.1080/09084280903526182.PubMedCrossRefGoogle Scholar
  3. Arnsten, A. F., & Rubia, K. (2012). Neurobiological circuits regulating attention, cognitive control, motivation, and emotion: disruptions in neurodevelopmental psychiatric disorders. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Journal of the American Academy of Child and Adolescent Psychiatry, 51(4), 356–367. doi: 10.1016/j.jaac.2012.01.008.PubMedCrossRefGoogle Scholar
  4. Arnsten, A. F., Wang, M. J., & Paspalas, C. D. (2012). Neuromodulation of thought: flexibilities and vulnerabilities in prefrontal cortical network synapses. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Neuron, 76(1), 223–239. doi: 10.1016/j.neuron.2012.08.038.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Aronoff, G. M., Mandel, S., Genovese, E., Maitz, E. A., Dorto, A. J., Klimek, E. H., & Staats, T. E. (2007). Evaluating malingering in contested injury or illness. [Review]. Pain Practice : The Official Journal of World Institute of Pain, 7(2), 178–204. doi: 10.1111/j.1533-2500.2007.00126.x.CrossRefGoogle Scholar
  6. Astafiev, S. V., Shulman, G. L., Metcalf, N. V., Rengachary, J., Mac Donald, C. L., Harrington, D. L., & Corbetta, M. (2015). Abnormal white matter BOLD signals in chronic mild traumatic brain injury. Journal of Neurotrauma. doi: 10.1089/neu.2014.3547.PubMedGoogle Scholar
  7. Aybek, S., Nicholson, T. R., Zelaya, F., O’Daly, O. G., Craig, T. J., David, A. S., & Kanaan, R. A. (2014). Neural correlates of recall of life events in conversion disorder. [Research Support, Non-U.S. Gov’t]. JAMA Psychiatry, 71(1), 52–60. doi: 10.1001/jamapsychiatry.2013.2842.PubMedCrossRefGoogle Scholar
  8. Bass, C., & Halligan, P. W. (2007). Illness related deception: social or psychiatric problem? [Review]. Journal of the Royal Society of Medicine, 100(2), 81–84. doi: 10.1258/jrsm.100.2.81.PubMedCentralPubMedCrossRefGoogle Scholar
  9. Bass, C., & Halligan, P. (2014). Factitious disorders and malingering: challenges for clinical assessment and management. [Review]. Lancet, 383(9926), 1422–1432. doi: 10.1016/S0140-6736(13)62186-8.PubMedCrossRefGoogle Scholar
  10. Bayly, P. V., Clayton, E. H., & Genin, G. M. (2012). Quantitative imaging methods for the development and validation of brain biomechanics models. [Research Support, N.I.H., Extramural Review]. Annual Review of Biomedical Engineering, 14, 369–396. doi: 10.1146/annurev-bioeng-071811-150032.PubMedCentralPubMedCrossRefGoogle Scholar
  11. Bendefeldt, F., Miller, L. L., & Ludwig, A. M. (1976). Cognitive performance in conversion hysteria. [Comparative Study]. Archives of General Psychiatry, 33(10), 1250–1254.PubMedCrossRefGoogle Scholar
  12. Benson, R. R., Gattu, R., Sewick, B., Kou, Z., Zakariah, N., Cavanaugh, J. M., & Haacke, E. M. (2012). Detection of hemorrhagic and axonal pathology in mild traumatic brain injury using advanced MRI: implications for neurorehabilitation. NeuroRehabilitation, 31(3), 261–279. doi: 10.3233/NRE-2012-0795.PubMedGoogle Scholar
  13. Bigler, E. D. (2012). Symptom validity testing, effort, and neuropsychological assessment. [Research Support, N.I.H., Extramural Review]. Journal of the International Neuropsychological Society : JINS, 18(4), 632–640.PubMedCrossRefGoogle Scholar
  14. Bigler, E. D. (2013). Neuroinflammation and the dynamic lesion in traumatic brain injury. [Comment]. Brain : A Journal of Neurology, 136(Pt 1), 9–11. doi: 10.1093/brain/aws342.CrossRefGoogle Scholar
  15. Bigler, E. D. (2014a). Comment: importance of cognitive reserve in traumatic brain injury. [Comment]. Neurology, 82(18), 1641. doi: 10.1212/WNL.0000000000000395.PubMedCrossRefGoogle Scholar
  16. Bigler, E. D. (2014b). Effort, symptom validity testing, performance validity testing and traumatic brain injury. Brain Injury, 28(13–14), 1623–1638. doi: 10.3109/02699052.2014.947627.PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bigler, E. D. (2015). Use of Symptom Validity Tests and Performance Validity Tests in Disability Determinations. Retrieved from
  18. Bigler, E. D., & Deibert, E. (2014). Lesion analysis in mild traumatic brain injury: old school goes high tech. [Comment Editorial]. Neurology, 83(14), 1226–1227. doi: 10.1212/WNL.0000000000000848.PubMedCrossRefGoogle Scholar
  19. Bigler, E. D., & Maxwell, W. L. (2012). Neuropathology of mild traumatic brain injury: relationship to neuroimaging findings. [Review]. Brain Imaging and Behavior, 6(2), 108–136. doi: 10.1007/s11682-011-9145-0.PubMedCrossRefGoogle Scholar
  20. Bigler, E. D., McCauley, S. R., Wu, T. C., Yallampalli, R., Shah, S., MacLeod, M., & Wilde, E. A. (2010). The temporal stem in traumatic brain injury: preliminary findings. [Comparative Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Brain Imaging and Behavior, 4(3–4), 270–282. doi: 10.1007/s11682-010-9105-0.PubMedCrossRefGoogle Scholar
  21. Binder, L. M., Larrabee, G. J., & Millis, S. R. (2014). Intent to Fail: Significance Testing of Forced Choice Test Results. The Clinical neuropsychologist, 1–10. doi:  10.1080/13854046.2014.978383
  22. Bol, Y., Duits, A. A., Hupperts, R. M., Verlinden, I., & Verhey, F. R. (2010). The impact of fatigue on cognitive functioning in patients with multiple sclerosis. Clinical Rehabilitation, 24(9), 854–862. doi: 10.1177/0269215510367540.PubMedCrossRefGoogle Scholar
  23. Bracht, T., Jones, D. K., Muller, T. J., Wiest, R., & Walther, S. (2014). Limbic white matter microstructure plasticity reflects recovery from depression. Journal of Affective Disorders, 170C, 143–149. doi: 10.1016/j.jad.2014.08.031.Google Scholar
  24. Brancu, M., Thompson, N. L., Beckham, J. C., Green, K. T., Calhoun, P. S., Elbogen, E. B., & Wagner, H. R. (2014). The impact of social support on psychological distress for U.S. Afghanistan/Iraq era veterans with PTSD and other psychiatric diagnoses. [Research Support, Non-U.S. Gov’t]. Psychiatry Research, 217(1–2), 86–92. doi: 10.1016/j.psychres.2014.02.025.PubMedCrossRefGoogle Scholar
  25. Braver, T. S., Krug, M. K., Chiew, K. S., Kool, W., Westbrook, J. A., Clement, N. J., & Somerville, L. H. (2014). Mechanisms of motivation-cognition interaction: challenges and opportunities. Cognitive, Affective, & Behavioral Neuroscience, 14(2), 443–472. doi: 10.3758/s13415-014-0300-0.CrossRefGoogle Scholar
  26. Browndyke, J. N., Paskavitz, J., Sweet, L. H., Cohen, R. A., Tucker, K. A., Welsh-Bohmer, K. A., & Schmechel, D. E. (2008). Neuroanatomical correlates of malingered memory impairment: event-related fMRI of deception on a recognition memory task. [Clinical Trial Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Brain Injury, 22(6), 481–489. doi: 10.1080/02699050802084894.PubMedCentralPubMedCrossRefGoogle Scholar
  27. Bush, S. S., Ruff, R. M., Troster, A. I., Barth, J. T., Koffler, S. P., Pliskin, N. H., & Silver, C. H. (2005). Symptom validity assessment: practice issues and medical necessity NAN policy & planning committee. [Review]. Archives of Clinical Neuropsychology : The Official Journal of the National Academy of Neuropsychologists, 20(4), 419–426. doi: 10.1016/j.acn.2005.02.002.CrossRefGoogle Scholar
  28. Bush, S. S., Ruff, R., & Heilbronner, R. L. (2014). Psychological assessment of symptom and performance validity, response bias, and malingering: Official position of the Association of Psychological Advancement in Psychological Injury and Law. Psychological Injury and Law, 7, 197–205.CrossRefGoogle Scholar
  29. Chew, L. J., Fusar-Poli, P., & Schmitz, T. (2013). Oligodendroglial alterations and the role of microglia in white matter injury: relevance to schizophrenia. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Developmental Neuroscience, 35(2–3), 102–129. doi: 10.1159/000346157.PubMedCentralPubMedCrossRefGoogle Scholar
  30. Clark, A. L., Amick, M. M., Fortier, C., Milberg, W. P., & McGlinchey, R. E. (2014). Poor performance validity predicts clinical characteristics and cognitive test performance of OEF/OIF/OND Veterans in a research setting. [Research Support, Non-U.S. Gov’t Validation Studies]. The Clinical Neuropsychologist, 28(5), 802–825. doi: 10.1080/13854046.2014.904928.PubMedCrossRefGoogle Scholar
  31. Clark, A. L., Sorg, S. F., Schiehser, D. M., Bigler, E. D., Bondi, M. W., Jacobson, M. W., Delano-Wood, L. (2015). White matter associations with performance validity testing in veterans with mild traumatic brain injury (mTBI): the utility of biomarkers in complicated assessment under review.Google Scholar
  32. Clery-Melin, M. L., Schmidt, L., Lafargue, G., Baup, N., Fossati, P., & Pessiglione, M. (2011). Why don’t you try harder? An investigation of effort production in major depression. [Research Support, Non-U.S. Gov’t]. PLoS ONE, 6(8), e23178. doi: 10.1371/journal.pone.0023178.PubMedCentralPubMedCrossRefGoogle Scholar
  33. Cooper, D. B., Vanderploeg, R. D., Armistead-Jehle, P., Lewis, J. D., & Bowles, A. O. (2014). Factors associated with neurocognitive performance in OIF/OEF servicemembers with postconcussive complaints in postdeployment clinical settings. Journal of Rehabilitation Research and Development, 51(7). doi:  10.1682/JRRD.2013.05.0140.
  34. Costanzo, M. E., Chou, Y. Y., Leaman, S., Pham, D. L., Keyser, D., Nathan, D. E., & Roy, M. J. (2014). Connecting combat-related mild traumatic brain injury with posttraumatic stress disorder symptoms through brain imaging. [Research Support, U.S. Gov’t, Non-P.H.S.]. Neuroscience Letters, 577, 11–15. doi: 10.1016/j.neulet.2014.05.054.PubMedCrossRefGoogle Scholar
  35. Dahm, J., & Ponsford, J. (2014). Comparison of long-term outcomes following traumatic injury: What is the unique experience for those with brain injury compared with orthopaedic injury? Injury. doi: 10.1016/j.injury.2014.07.012.PubMedGoogle Scholar
  36. Davenport, N. D., Lim, K. O., & Sponheim, S. R. (2014). White matter abnormalities associated with military PTSD in the context of blast TBI. Human Brain Mapping. doi: 10.1002/hbm.22685.PubMedGoogle Scholar
  37. DeRight, J., & Jorgensen, R. S. (2014). I just want my research credit: frequency of suboptimal effort in a non-clinical healthy undergraduate sample. The Clinical Neuropsychologist, 1–17. doi:  10.1080/13854046.2014.989267.
  38. Dobryakova, E., DeLuca, J., Genova, H. M., & Wylie, G. R. (2013). Neural correlates of cognitive fatigue: cortico-striatal circuitry and effort-reward imbalance. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Journal of the International Neuropsychological Society : JINS, 19(8), 849–853. doi: 10.1017/S1355617713000684.PubMedCrossRefGoogle Scholar
  39. Ekmark-Lewen, S., Flygt, J., Kiwanuka, O., Meyerson, B. J., Lewen, A., Hillered, L., & Marklund, N. (2013). Traumatic axonal injury in the mouse is accompanied by a dynamic inflammatory response, astroglial reactivity and complex behavioral changes. [Research Support, Non-U.S. Gov’t]. Journal of Neuroinflammation, 10, 44. doi: 10.1186/1742-2094-10-44.PubMedCentralPubMedCrossRefGoogle Scholar
  40. Engelmann, J. B., Damaraju, E., Padmala, S., & Pessoa, L. (2009). Combined effects of attention and motivation on visual task performance: transient and sustained motivational effects. Frontiers in Human Neuroscience, 3, 4. doi: 10.3389/neuro.09.004.2009.PubMedCentralPubMedCrossRefGoogle Scholar
  41. Engstrom, M., Landtblom, A. M., & Karlsson, T. (2013). Brain and effort: brain activation and effort-related working memory in healthy participants and patients with working memory deficits. Frontiers in Human Neuroscience, 7, 140. doi: 10.3389/fnhum.2013.00140.PubMedCentralPubMedCrossRefGoogle Scholar
  42. Esposito, F., Otto, T., Zijlstra, F. R., & Goebel, R. (2014). Spatially distributed effects of mental exhaustion on resting-state FMRI networks. PLoS ONE, 9(4), e94222. doi: 10.1371/journal.pone.0094222.PubMedCentralPubMedCrossRefGoogle Scholar
  43. Farah, M. J., Hutchinson, J. B., Phelps, E. A., & Wagner, A. D. (2014). Functional MRI-based lie detection: scientific and societal challenges. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Nature Reviews Neuroscience, 15(2), 123–131.PubMedCrossRefGoogle Scholar
  44. Ferrari, R., Kwan, O., & Friel, J. (2001). Cognitive theory and illness behavior in disability syndromes. Medical Hypotheses, 57(1), 68–75. doi: 10.1054/mehy.2000.1167.PubMedCrossRefGoogle Scholar
  45. Fervaha, G., Foussias, G., Agid, O., & Remington, G. (2013). Neural substrates underlying effort computation in schizophrenia. [Review]. Neuroscience and Biobehavioral Reviews, 37(10 Pt 2), 2649–2665. doi: 10.1016/j.neubiorev.2013.09.001.PubMedCrossRefGoogle Scholar
  46. Flaro, L., Green, P., & Robertson, E. (2007). Word Memory Test failure 23 times higher in mild brain injury than in parents seeking custody: the power of external incentives. Brain Injury, 21(4), 373–383. doi: 10.1080/02699050701311133.PubMedCrossRefGoogle Scholar
  47. Frederick, R. I. (2002). A Review of Rey’s Strategies for Detecting Malingered Neuropsychological Impairment. Journal of Forensic Neuropsychology, 3(4), 1–25.Google Scholar
  48. Freedman, D., & Manly, J. (2015). Use of normative data and measures of performance validity and symptom validity in assessment of cognitive function. Institute of Medicine Webpage. Retrieved from
  49. French, L. M. (2010). Military traumatic brain injury: an examination of important differences. [Review]. Annals of the New York Academy of Sciences, 1208, 38–45. doi: 10.1111/j.1749-6632.2010.05696.x.PubMedCrossRefGoogle Scholar
  50. French, L. M., Lange, R. T., & Brickell, T. (2014). Subjective cognitive complaints and neuropsychological test performance following military-related traumatic brain injury. Journal of Rehabilitation Research and Development, 51(6), 933–950. doi: 10.1682/JRRD.2013.10.0226.PubMedCrossRefGoogle Scholar
  51. Gil, R., Abdul-Samad, F., Mathis, S., & Neau, J. P. (2010). Was there a confusion before 1950 between global transient global amnesia and psychogenic amnesia?]. [Historical Article. Revue Neurologique, 166(8–9), 699–703. doi: 10.1016/j.neurol.2010.01.002.PubMedCrossRefGoogle Scholar
  52. Gombos, V. A. (2006). The cognition of deception: the role of executive processes in producing lies. [Review]. Genetic, Social, and General Psychology Monographs, 132(3), 197–214.PubMedCrossRefGoogle Scholar
  53. Gondi, V., Tome, W. A., & Mehta, M. P. (2010). Why avoid the hippocampus? A comprehensive review. [Review]. Radiotherapy and Oncology : Journal of the European Society for Therapeutic Radiology and Oncology, 97(3), 370–376. doi: 10.1016/j.radonc.2010.09.013.CrossRefGoogle Scholar
  54. Green, P., Iverson, G. L., & Allen, L. (1999). Detecting malingering in head injury litigation with the Word Memory Test. Brain Injury, 13(10), 813–819.PubMedCrossRefGoogle Scholar
  55. Green, P., Flaro, L., & Courtney, J. (2009). Examining false positives on the Word Memory Test in adults with mild traumatic brain injury. Brain Injury, 23(9), 741–750. doi: 10.1080/02699050903133962.PubMedCrossRefGoogle Scholar
  56. Groenewold, N. A., Roest, A. M., Renken, R. J., Opmeer, E. M., Veltman, D. J., van der Wee, N. J., & Harmer, C. J. (2014). Cognitive vulnerability and implicit emotional processing: imbalance in frontolimbic brain areas? Cognitive, Affective, & Behavioral Neuroscience. doi: 10.3758/s13415-014-0316-5.Google Scholar
  57. Haggerty, K. A., Frazier, T. W., Busch, R. M., & Naugle, R. I. (2007). Relationships among victoria symptom validity test indices and personality assessment inventory validity scales in a large clinical sample. The Clinical Neuropsychologist, 21(6), 917–928. doi: 10.1080/13854040600899724.PubMedCrossRefGoogle Scholar
  58. Hammar, A., & Ardal, G. (2012). Effortful information processing in patients with major depression - a 10-year follow-up study. [Research Support, Non-U.S. Gov’t]. Psychiatry Research, 198(3), 420–423. doi: 10.1016/j.psychres.2011.11.020.PubMedCrossRefGoogle Scholar
  59. Hammar, A., Lund, A., & Hugdahl, K. (2003). Selective impairment in effortful information processing in major depression. [Comparative Study]. Journal of the International Neuropsychological Society : JINS, 9(6), 954–959. doi: 10.1017/S1355617703960152.PubMedCrossRefGoogle Scholar
  60. Hampson, N. E., Kemp, S., Coughlan, A. K., Moulin, C. J., & Bhakta, B. B. (2014). Effort test performance in clinical acute brain injury, community brain injury, and epilepsy populations. Applied Neuropsychology Adult, 21(3), 183–194. doi: 10.1080/09084282.2013.787425.PubMedCrossRefGoogle Scholar
  61. Harrington, M. E. (2012). Neurobiological studies of fatigue. [Research Support, N.I.H., Extramural Review]. Progress in Neurobiology, 99(2), 93–105. doi: 10.1016/j.pneurobio.2012.07.004.PubMedCentralPubMedCrossRefGoogle Scholar
  62. Hartlage, S., Alloy, L. B., Vazquez, C., & Dykman, B. (1993). Automatic and effortful processing in depression. [Review]. Psychological Bulletin, 113(2), 247–278.PubMedCrossRefGoogle Scholar
  63. Heilbronner, R. L., Sweet, J. J., Morgan, J. E., Larrabee, G. J., & Millis, S. R. (2009). American Academy of Clinical Neuropsychology Consensus Conference Statement on the neuropsychological assessment of effort, response bias, and malingering. [Consensus Development Conference]. The Clinical Neuropsychologist, 23(7), 1093–1129. doi: 10.1080/13854040903155063.PubMedCrossRefGoogle Scholar
  64. Herman, A. B., Houde, J. F., Vinogradov, S., & Nagarajan, S. S. (2013). Parsing the phonological loop: activation timing in the dorsal speech stream determines accuracy in speech reproduction. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 33(13), 5439–5453. doi: 10.1523/JNEUROSCI.1472-12.2013.CrossRefGoogle Scholar
  65. Hetherington, H. P., Hamid, H., Kulas, J., Ling, G., Bandak, F., de Lanerolle, N. C., & Pan, J. W. (2014). MRSI of the medial temporal lobe at 7 T in explosive blast mild traumatic brain injury. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Magnetic Resonance in Medicine : Official Journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine, 71(4), 1358–1367. doi: 10.1002/mrm.24814.CrossRefGoogle Scholar
  66. Hoover, S., Zottoli, T. M., & Grose-Fifer, J. (2014). ERP correlates of malingered executive dysfunction. [Randomized Controlled Trial]. International Journal of Psychophysiology : Official Journal of the International Organization of Psychophysiology, 91(2), 139–146. doi: 10.1016/j.ijpsycho.2013.12.009.CrossRefGoogle Scholar
  67. Howe, L. L., Anderson, A. M., Kaufman, D. A., Sachs, B. C., & Loring, D. W. (2007). Characterization of the Medical Symptom Validity Test in evaluation of clinically referred memory disorders clinic patients. [Validation Studies]. Archives of Clinical Neuropsychology : The Official Journal of the National Academy of Neuropsychologists, 22(6), 753–761. doi: 10.1016/j.acn.2007.06.003.CrossRefGoogle Scholar
  68. Hughes, D. M., Yates, M. J., Morton, E. E., & Smillie, L. D. (2014). Asymmetric frontal cortical activity predicts effort expenditure for reward. Social Cognitive and Affective Neuroscience. doi: 10.1093/scan/nsu149.PubMedCentralGoogle Scholar
  69. Ilvesmaki, T., Luoto, T. M., Hakulinen, U., Brander, A., Ryymin, P., Eskola, H., & Ohman, J. (2014). Acute mild traumatic brain injury is not associated with white matter change on diffusion tensor imaging. Brain : A Journal of Neurology, 137(Pt 7), 1876–1882. doi: 10.1093/brain/awu095.CrossRefGoogle Scholar
  70. Induruwa, I., Constantinescu, C. S., & Gran, B. (2012). Fatigue in multiple sclerosis - a brief review. [Review]. Journal of the Neurological Sciences, 323(1–2), 9–15. doi: 10.1016/j.jns.2012.08.007.PubMedCrossRefGoogle Scholar
  71. Jak, A. J., Gregory, A., Orff, H. J., Colon, C., Steele, N., Schiehser, D. M., Twamley, E. W. (2015). Neuropsychological performance in treatment-seeking Operation Enduring Freedom/Operation Iraqi Freedom Veterans with a history of mild traumatic brain injury. Journal of clinical and experimental neuropsychology, 1–10. doi:  10.1080/13803395.2015.1020769.
  72. Jobes, D. A. (2013). Reflections on suicide among soldiers. [Comment]. Psychiatry, 76(2), 126–131. doi: 10.1521/psyc.2013.76.2.126.PubMedCrossRefGoogle Scholar
  73. Johnstone, T., van Reekum, C. M., Urry, H. L., Kalin, N. H., & Davidson, R. J. (2007). Failure to regulate: counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 27(33), 8877–8884. doi: 10.1523/JNEUROSCI.2063-07.2007.CrossRefGoogle Scholar
  74. Kamat, R., Brown, G. G., Bolden, K., Fennema-Notestein, C., Archibald, S., Marcotte, T. D., & Heaton, R. K. (2014). Apathy is associated with white matter abnormalities in anterior, medial brain regions in persons with HIV infection. Journal of Clinical and Experimental Neuropsychology, 36(8), 854–866. doi: 10.1080/13803395.2014.950636.PubMedCentralPubMedCrossRefGoogle Scholar
  75. Kanaan, R., Armstrong, D., Barnes, P., & Wessely, S. (2009). In the psychiatrist’s chair: how neurologists understand conversion disorder. [Historical Article Research Support, Non-U.S. Gov’t Review]. Brain : A Journal of Neurology, 132(Pt 10), 2889–2896. doi: 10.1093/brain/awp060.CrossRefGoogle Scholar
  76. Kawa, L., Arborelius, U., Yoshitake, T., Kehr, J., Hokfelt, T., Risling, M., & Agoston, D. V. (2014). Neurotransmitter systems in a mild blast traumatic brain injury model: catecholamines and serotonin. Journal of Neurotrauma. doi: 10.1089/neu.2014.3669.Google Scholar
  77. Kimble, G. A. (1950). Evidence for the role of motivation in determining the amount of reminiscence in pursuit rotor learning. Journal of Experimental Psychology, 40(2), 248–253.PubMedCrossRefGoogle Scholar
  78. Kohl, A. D., Wylie, G. R., Genova, H. M., Hillary, F. G., & Deluca, J. (2009). The neural correlates of cognitive fatigue in traumatic brain injury using functional MRI. [Research Support, N.I.H., Extramural]. Brain Injury, 23(5), 420–432. doi: 10.1080/02699050902788519.PubMedCrossRefGoogle Scholar
  79. Kopelman, M. D. (1987). Amnesia: organic and psychogenic. [Research Support, Non-U.S. Gov’t Review]. The British Journal of Psychiatry : The Journal of Mental Science, 150, 428–442.CrossRefGoogle Scholar
  80. Kwan, O., & Friel, J. (2002). Clinical relevance of the sick role and secondary gain in the treatment of disability syndromes. Medical Hypotheses, 59(2), 129–134.PubMedCrossRefGoogle Scholar
  81. Lange, R. T., Panenka, W. J., Shewchuk, J. R., Heran, M. K., Brubacher, J. R., Bioux, S., & Iverson, G. L. (2014). Diffusion Tensor Imaging Findings and Postconcussion Symptom Reporting Six Weeks Following Mild Traumatic Brain Injury. Archives of Clinical Neuropsychology : The Official Journal of the National Academy of Neuropsychologists. doi: 10.1093/arclin/acu060.Google Scholar
  82. Lange, R. T., Brickell, T. A., & French, L. M. (2015). Examination of the Mild Brain Injury Atypical Symptom Scale and the Validity-10 Scale to detect symptom exaggeration in US military service members. Journal of clinical and experimental neuropsychology, 1–13. doi:  10.1080/13803395.2015.1013021.
  83. Larrabee, G. J. (2012). Performance validity and symptom validity in neuropsychological assessment. Journal of the International Neuropsychological Society : JINS, 18(4), 625–630.PubMedCrossRefGoogle Scholar
  84. Larsen, J. D., Allen, M. D., Bigler, E. D., Goodrich-Hunsaker, N. J., & Hopkins, R. O. (2010). Different patterns of cerebral activation in genuine and malingered cognitive effort during performance on the Word Memory Test. [Research Support, Non-U.S. Gov’t Validation Studies]. Brain Injury, 24(2), 89–99. doi: 10.3109/02699050903508218.PubMedCrossRefGoogle Scholar
  85. Lee, G. P., Loring, D. W., & Martin, R. C. (1992). Rey’s 15-item visual memory test for the detection of malingering: Normative Observations on patients with neurological disorders. Psychological Assessment, 4(1), 43–46.CrossRefGoogle Scholar
  86. Leighton, A., Weinborn, M., & Maybery, M. (2014). Bridging the Gap Between Neurocognitive Processing Theory and Performance Validity Assessment among the Cognitively Impaired: A Review and Methodological Approach. Journal of the International Neuropsychological Society : JINS, 20(9), 873–886. doi: 10.1017/S135561771400085X.PubMedCrossRefGoogle Scholar
  87. Lester, K., Stepleman, L., & Hughes, M. (2007). The association of illness severity, self-reported cognitive impairment, and perceived illness management with depression and anxiety in a multiple sclerosis clinic population. Journal of Behavioral Medicine, 30(2), 177–186. doi: 10.1007/s10865-007-9095-6.PubMedCrossRefGoogle Scholar
  88. Lezak, M. D., Howieson, D. B., Bigler, E. D., & Tranel, D. (2012). Neuropsychological Assessment. New York: Oxford University Press.Google Scholar
  89. Liu, X., Li, L., Tang, F., Wu, S., & Hu, Y. (2014). Memory impairment in chronic pain patients and the related neuropsychological mechanisms: a review. [Research Support, Non-U.S. Gov’t]. Acta Neuropsychiatrica, 26(4), 195–201.PubMedCrossRefGoogle Scholar
  90. Lloyd, D. M., Findlay, G., Roberts, N., & Nurmikko, T. (2014). Illness behavior in patients with chronic low back pain and activation of the affective circuitry of the brain. [Research Support, Non-U.S. Gov’t]. Psychosomatic Medicine, 76(6), 413–421. doi: 10.1097/PSY.0000000000000076.PubMedCrossRefGoogle Scholar
  91. Locke, D. E., Smigielski, J. S., Powell, M. R., & Stevens, S. R. (2008). Effort issues in post-acute outpatient acquired brain injury rehabilitation seekers. NeuroRehabilitation, 23(3), 273–281.PubMedGoogle Scholar
  92. Loring, D. W., Lee, G. P., & Meador, K. J. (2005). Victoria symptom validity test performance in non-litigating epilepsy surgery candidates. [Comparative Study Validation Studies]. Journal of Clinical and Experimental Neuropsychology, 27(5), 610–617. doi: 10.1080/13803390490918471.PubMedCrossRefGoogle Scholar
  93. Lui, Y. W., Xue, Y., Kenul, D., Ge, Y., Grossman, R. I., & Wang, Y. (2014). Classification algorithms using multiple MRI features in mild traumatic brain injury. [Research Support, N.I.H., Extramural]. Neurology, 83(14), 1235–1240. doi: 10.1212/WNL.0000000000000834.PubMedPubMedCentralCrossRefGoogle Scholar
  94. Matthews, G., Reinerman-Jones, L. E., Barber, D. J., & Abich, J. T. (2015). The psychometrics of mental workload: multiple measures are sensitive but divergent. [Research Support, U.S. Gov’t, Non-P.H.S.]. Human Factors, 57(1), 125–143.PubMedCrossRefGoogle Scholar
  95. Mayer, A., Hanlon, F. M., & Ling, J. (2014a). Gray Matter Abnormalities in Pediatric Mild Traumatic Brain Injury. Journal of Neurotrauma. doi: 10.1089/neu.2014.3534.Google Scholar
  96. Mayer, A. R., Bellgowan, P. S., & Hanlon, F. M. (2014b). Functional magnetic resonance imaging of mild traumatic brain injury. [Review]. Neuroscience and Biobehavioral Reviews, 49C, 8–18. doi: 10.1016/j.neubiorev.2014.11.016.Google Scholar
  97. McCormick, C. L., Yoash-Gantz, R. E., McDonald, S. D., Campbell, T. C., & Tupler, L. A. (2013). Performance on the Green Word Memory Test following Operation Enduring Freedom/Operation Iraqi Freedom-era military service: Test failure is related to evaluation context. [Research Support, U.S. Gov’t, Non-P.H.S.]. Archives of Clinical Neuropsychology : The Official Journal of the National Academy of Neuropsychologists, 28(8), 808–823. doi: 10.1093/arclin/act050.CrossRefGoogle Scholar
  98. Nave, K. A. (2010). Myelination and support of axonal integrity by glia. [Research Support, Non-U.S. Gov’t Review]. Nature, 468(7321), 244–252. doi: 10.1038/nature09614.PubMedCrossRefGoogle Scholar
  99. Nave, K. A., & Ehrenreich, H. (2014). Myelination and oligodendrocyte functions in psychiatric diseases. [Review]. JAMA Psychiatry, 71(5), 582–584. doi: 10.1001/jamapsychiatry.2014.189.PubMedCrossRefGoogle Scholar
  100. Newcombe, V. F., Outtrim, J. G., Chatfield, D. A., Manktelow, A., Hutchinson, P. J., Coles, J. P., & Menon, D. K. (2011). Parcellating the neuroanatomical basis of impaired decision-making in traumatic brain injury. [Research Support, Non-U.S. Gov’t]. Brain : A Journal of Neurology, 134(Pt 3), 759–768. doi: 10.1093/brain/awq388.CrossRefGoogle Scholar
  101. Nicholson, T. R., Stone, J., & Kanaan, R. A. (2011). Conversion disorder: a problematic diagnosis. [Research Support, Non-U.S. Gov’t Review]. Journal of Neurology, Neurosurgery and Psychiatry, 82(11), 1267–1273. doi: 10.1136/jnnp.2008.171306.PubMedCrossRefGoogle Scholar
  102. Nicholson, T. R., Aybek, S., Kempton, M. J., Daly, E. M., Murphy, D. G., David, A. S., & Kanaan, R. A. (2014). A structural MRI study of motor conversion disorder: evidence of reduction in thalamic volume. [Research Support, Non-U.S. Gov’t]. Journal of Neurology, Neurosurgery and Psychiatry, 85(2), 227–229. doi: 10.1136/jnnp-2013-305012.PubMedCrossRefGoogle Scholar
  103. Nihonmatsu-Kikuchi, N., Hayashi, Y., Yu, X. J., & Tatebayashi, Y. (2013). Depression and Alzheimer’s disease: novel postmortem brain studies reveal a possible common mechanism. [Research Support, Non-U.S. Gov’t Review]. Journal of Alzheimer’s disease : JAD, 37(3), 611–621. doi: 10.3233/JAD-130752.PubMedGoogle Scholar
  104. Nock, M. K., Deming, C. A., Fullerton, C. S., Gilman, S. E., Goldenberg, M., Kessler, R. C., & Ursano, R. J. (2013). Suicide among soldiers: a review of psychosocial risk and protective factors. [Research Support, N.I.H., Extramural Review]. Psychiatry, 76(2), 97–125. doi: 10.1521/psyc.2013.76.2.97.PubMedCentralPubMedCrossRefGoogle Scholar
  105. O’Neil, E. B., Watson, H. C., Dhillon, S., Lobaugh, N., & Lee, A. C. (2015). Multivariate fMRI and Eye Tracking Reveal Differential Effects of Visual Interference on Recognition Memory Judgments for Objects and Scenes. Journal of cognitive neuroscience, 1–15. doi:  10.1162/jocn_a_00816.
  106. Ota, M., Noda, T., Sato, N., Hattori, K., Hori, H., Sasayama, D., & Kunugi, H. (2014). White matter abnormalities in major depressive disorder with melancholic and atypical features: a Diffusion tensor imaging study. Psychiatry and Clinical Neurosciences. doi: 10.1111/pcn.12255.Google Scholar
  107. Passarotti, A. M., Ellis, J., Wegbreit, E., Stevens, M. C., & Pavuluri, M. N. (2012). Reduced functional connectivity of prefrontal regions and amygdala within affect and working memory networks in pediatric bipolar disorder. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Brain Connectivity, 2(6), 320–334. doi: 10.1089/brain.2012.0089.PubMedCentralPubMedCrossRefGoogle Scholar
  108. Patti, F., De Stefano, M., Lavorgna, L., Messina, S., Chisari, C. G., Ippolito, D., & Tedeschi, G. (2015). Lesion load may predict long-term cognitive dysfunction in multiple sclerosis patients. PLoS ONE, 10(3), e0120754. doi: 10.1371/journal.pone.0120754.PubMedCentralPubMedCrossRefGoogle Scholar
  109. Pedersen, H., Schwent Shultz, L., Roper, B., Crucian, G., & Crouse, E. (2014). C-80Is Deceptive Language Necessary to Detect Posttraumatic Stress Disorder (PTSD) Symptom Exaggeration? A Look at the Morel Emotional Numbing Test (MENT). Archives of Clinical Neuropsychology : The Official Journal of the National Academy of Neuropsychologists, 29(6), 603. doi: 10.1093/arclin/acu038.261.CrossRefGoogle Scholar
  110. Perez, D. L., Barsky, A. J., Daffner, K., & Silbersweig, D. A. (2012). Motor and somatosensory conversion disorder: a functional unawareness syndrome? [Review]. The Journal of Neuropsychiatry and Clinical Neurosciences, 24(2), 141–151. doi: 10.1176/appi.neuropsych.11050110.PubMedCrossRefGoogle Scholar
  111. Pessoa, L., & Engelmann, J. B. (2010). Embedding reward signals into perception and cognition. Frontiers in neuroscience, 4. doi:  10.3389/fnins.2010.00017.
  112. Ploetz, D. M., Mazur-Mosiewicz, A., Kirkwood, M. W., Sherman, E. M., & Brooks, B. L. (2014). Performance on the test of memory malingering in children with neurological conditions. Child Neuropsychology : a Journal on Normal and Abnormal Development in Childhood and Adolescence, 1–10. doi:  10.1080/09297049.2014.986446.
  113. Pogoda, T. K., Stolzmann, K. L., Iverson, K. M., Baker, E., Krengel, M., Lew, H. L., & Meterko, M. (2014). Associations Between Traumatic Brain Injury, Suspected Psychiatric Conditions, and Unemployment in Operation Enduring Freedom/Operation Iraqi Freedom Veterans. The Journal of Head Trauma Rehabilitation. doi: 10.1097/HTR.0000000000000092.PubMedGoogle Scholar
  114. Proto, D. A., Pastorek, N. J., Miller, B. I., Romesser, J. M., Sim, A. H., & Linck, J. F. (2014). The dangers of failing one or more performance validity tests in individuals claiming mild traumatic brain injury-related postconcussive symptoms. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S.]. Archives of Clinical Neuropsychology : The Official Journal of the National Academy of Neuropsychologists, 29(7), 614–624. doi: 10.1093/arclin/acu044.CrossRefGoogle Scholar
  115. Rey, A. (1941). “L’examen psychologique dans les cas d’encephalopathie traumatique.(Les problems. Archives de Psychologie, 28, 215–285.Google Scholar
  116. Rey, A. (1958). L’examen clinique en psychologie [The psychological examination]. Paris: Presses Universitaires de France.Google Scholar
  117. Rey, A. (1964). Lexamen cliniaue en psychologie [The clinical examination in psychology]. Paris: Presses Universitaires de France.Google Scholar
  118. Robinson, M. J., Warlow, S. M., & Berridge, K. C. (2014). Optogenetic excitation of central amygdala amplifies and narrows incentive motivation to pursue one reward above another. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 34(50), 16567–16580. doi: 10.1523/JNEUROSCI.2013-14.2014.CrossRefGoogle Scholar
  119. Ropper, A. H., & Gorson, K. C. (2007). Clinical practice. Concussion. [Review]. The New England Journal of Medicine, 356(2), 166–172. doi: 10.1056/NEJMcp064645.PubMedCrossRefGoogle Scholar
  120. Ross, D. E., Ochs, A. L., Seabaugh, J., & Henshaw, T. (2012a). NeuroQuant(R) revealed hippocampal atrophy in a patient with traumatic brain injury. [Case Reports Letter]. The Journal of Neuropsychiatry and Clinical Neurosciences, 24(1), E33. doi: 10.1176/appi.neuropsych.11020044.PubMedCrossRefGoogle Scholar
  121. Ross, D. E., Ochs, A. L., Seabaugh, J. M., Demark, M. F., Shrader, C. R., Marwitz, J. H., & Havranek, M. D. (2012b). Progressive brain atrophy in patients with chronic neuropsychiatric symptoms after mild traumatic brain injury: a preliminary study. [Comparative Study Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Brain Injury, 26(12), 1500–1509. doi: 10.3109/02699052.2012.694570.PubMedCrossRefGoogle Scholar
  122. Salamone, J. D., Correa, M., Farrar, A., & Mingote, S. M. (2007). Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S. Review]. Psychopharmacology, 191(3), 461–482. doi: 10.1007/s00213-006-0668-9.PubMedCrossRefGoogle Scholar
  123. Sandy Macleod, A. D. (2010). Post concussion syndrome: the attraction of the psychological by the organic. [Historical Article]. Medical Hypotheses, 74(6), 1033–1035. doi: 10.1016/j.mehy.2010.01.002.PubMedCrossRefGoogle Scholar
  124. Sarter, M., Gehring, W. J., & Kozak, R. (2006). More attention must be paid: the neurobiology of attentional effort. [Research Support, N.I.H., Extramural Review]. Brain Research Reviews, 51(2), 145–160. doi: 10.1016/j.brainresrev.2005.11.002.PubMedCrossRefGoogle Scholar
  125. Schneider, E. B., Sur, S., Raymont, V., Duckworth, J., Kowalski, R. G., Efron, D. T., & Stevens, R. D. (2014). Functional recovery after moderate/severe traumatic brain injury: a role for cognitive reserve? [Multicenter Study Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. Neurology, 82(18), 1636–1642. doi: 10.1212/WNL.0000000000000379.PubMedCentralPubMedCrossRefGoogle Scholar
  126. Sela, I., Izzetoglu, M., Izzetoglu, K., & Onaral, B. (2012). A working memory deficit among dyslexic readers with no phonological impairment as measured using the n-back task: an fNIR study. [Research Support, Non-U.S. Gov’t]. PLoS ONE, 7(11), e46527. doi: 10.1371/journal.pone.0046527.PubMedCentralPubMedCrossRefGoogle Scholar
  127. Sharp, D. J., & Ham, T. E. (2011). Investigating white matter injury after mild traumatic brain injury. [Research Support, Non-U.S. Gov’t Review]. Current Opinion in Neurology, 24(6), 558–563. doi: 10.1097/WCO.0b013e32834cd523.PubMedCrossRefGoogle Scholar
  128. Shetty, A. K., Mishra, V., Kodali, M., & Hattiangady, B. (2014). Blood brain barrier dysfunction and delayed neurological deficits in mild traumatic brain injury induced by blast shock waves. [Review]. Frontiers in Cellular Neuroscience, 8, 232. doi: 10.3389/fncel.2014.00232.PubMedCentralPubMedGoogle Scholar
  129. Silvia, P. J., Nusbaum, E. C., Eddington, K. M., Beaty, R. E., & Kwapil, T. R. (2014). Effort Deficits and Depression: The Influence of Anhedonic Depressive Symptoms on Cardiac Autonomic Activity During a Mental Challenge. Motivation and Emotion, 38(6), 779–789. doi: 10.1007/s11031-014-9443-0.PubMedPubMedCentralCrossRefGoogle Scholar
  130. Skerrett, T. N., & Moss-Morris, R. (2006). Fatigue and social impairment in multiple sclerosis: the role of patients’ cognitive and behavioral responses to their symptoms. Journal of Psychosomatic Research, 61(5), 587–593. doi: 10.1016/j.jpsychores.2006.04.018.PubMedCrossRefGoogle Scholar
  131. Smith, C., Gentleman, S. M., Leclercq, P. D., Murray, L. S., Griffin, W. S., Graham, D. I., & Nicoll, J. A. (2013). The neuroinflammatory response in humans after traumatic brain injury. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Neuropathology and Applied Neurobiology, 39(6), 654–666. doi: 10.1111/nan.12008.PubMedCrossRefGoogle Scholar
  132. Sollman, M. J., & Berry, D. T. (2011). Detection of inadequate effort on neuropsychological testing: a meta-analytic update and extension. [Meta-Analysis]. Archives of Clinical Neuropsychology : The Official Journal of the National Academy of Neuropsychologists, 26(8), 774–789. doi: 10.1093/arclin/acr066.CrossRefGoogle Scholar
  133. Sorg, S. F., Delano-Wood, L., Luc, N., Schiehser, D. M., Hanson, K. L., Nation, D. A., & Bondi, M. W. (2014). White matter integrity in veterans with mild traumatic brain injury: associations with executive function and loss of consciousness. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]. The Journal of Head Trauma Rehabilitation, 29(1), 21–32. doi: 10.1097/HTR.0b013e31828a1aa4.PubMedCentralPubMedCrossRefGoogle Scholar
  134. Starkstein, S. E., & Pahissa, J. (2014). Apathy following traumatic brain injury. [Review]. The Psychiatric Clinics of North America, 37(1), 103–112. doi: 10.1016/j.psc.2013.10.002.PubMedCrossRefGoogle Scholar
  135. Stokum, J. A., Sours, C., Zhuo, J., Kane, R., Shanmuganathan, K., & Gullapalli, R. P. (2014). A longitudinal evaluation of diffusion kurtosis imaging in patients with mild traumatic brain injury. Brain Injury : [BI], 1–11. doi:  10.3109/02699052.2014.947628.
  136. Storbeck, J., Davidson, N. A., Dahl, C. F., Blass, S., & Yung, E. (2015). Emotion, working memory task demands and individual differences predict behavior, cognitive effort and negative affect. Cognition & Emotion, 29(1), 95–117. doi: 10.1080/02699931.2014.904222.CrossRefGoogle Scholar
  137. Suchotzki, K., Verschuere, B., Peth, J., Crombez, G., & Gamer, M. (2014). Manipulating item proportion and deception reveals crucial dissociation between behavioral, autonomic, and neural indices of concealed information. Human Brain Mapping. doi: 10.1002/hbm.22637.PubMedGoogle Scholar
  138. Suchy, Y., Chelune, G., Franchow, E. I., & Thorgusen, S. R. (2012). Confronting patients about insufficient effort: the impact on subsequent symptom validity and memory performance. [Comparative Study Research Support, Non-U.S. Gov’t]. The Clinical Neuropsychologist, 26(8), 1296–1311. doi: 10.1080/13854046.2012.722230.PubMedCrossRefGoogle Scholar
  139. Sweet, J. J., Goldman, D. J., & Guidotti Breting, L. M. (2013). Traumatic brain injury: guidance in a forensic context from outcome, dose–response, and response bias research. [Review]. Behavioral Sciences & the Law, 31(6), 756–778. doi: 10.1002/bsl.2088.CrossRefGoogle Scholar
  140. Takarada, Y., Mima, T., Abe, M., Nakatsuka, M., & Taira, M. (2014). Inhibition of the primary motor cortex can alter one’s “sense of effort”: Effects of low-frequency rTMS. Neuroscience Research. doi: 10.1016/j.neures.2014.09.005.Google Scholar
  141. Tanner, J. J., Mellott, E., Dunne, E. M., & Price, C. C. (2015). Integrating neuropsychology and brain imaging for a referral of possible pseudodementia: a case report. The Clinical Neuropsychologist, 1–21. doi:  10.1080/13854046.2015.1008047.
  142. Thomas, P., Goudemand, M., & Rousseaux, M. (1999). Attentional resources in major depression. [Clinical Trial Controlled Clinical Trial]. European Archives of Psychiatry and Clinical Neuroscience, 249(2), 79–85.PubMedCrossRefGoogle Scholar
  143. Trueblood, W., & Schmidt, M. (1993). Malingering and other validity considerations in the neuropsychological evaluation of mild head injury. Journal of Clinical and Experimental Neuropsychology, 15(4), 578–590. doi: 10.1080/01688639308402580.PubMedCrossRefGoogle Scholar
  144. U.S. Armed Forces, 1998–2012. (2013). Malingering and factitious disorders and illnesses, active component. MSMR, 20(7), 20–24. discussion 23–24.Google Scholar
  145. Vaishnavi, S., Rao, V., & Fann, J. R. (2009). Neuropsychiatric problems after traumatic brain injury: unraveling the silent epidemic. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S. Review]. Psychosomatics, 50(3), 198–205. doi: 10.1176/appi.psy.50.3.198.PubMedCrossRefGoogle Scholar
  146. van Hooft, E. A., & Born, M. P. (2012). Intentional response distortion on personality tests: using eye-tracking to understand response processes when faking. [Comparative Study Research Support, Non-U.S. Gov’t]. The Journal of Applied Psychology, 97(2), 301–316. doi: 10.1037/a0025711.PubMedCrossRefGoogle Scholar
  147. Waljas, M., Iverson, G., Lange, R., Hakulinen, U., Dastidar, P., Huhtala, H., & Ohman, J. (2014). A Prospective Biopsychosocial Study of the Persistent Post-Concussion Symptoms Following Mild Traumatic Brain Injury. Journal of Neurotrauma. doi: 10.1089/neu.2014.3339.Google Scholar
  148. Wieser, G. L., Gerwig, U. C., Adamcio, B., Barrette, B., Nave, K. A., Ehrenreich, H., & Goebbels, S. (2013). Neuroinflammation in white matter tracts of Cnp1 mutant mice amplified by a minor brain injury. [Research Support, Non-U.S. Gov’t]. Glia, 61(6), 869–880. doi: 10.1002/glia.22480.PubMedCrossRefGoogle Scholar
  149. Willis, P. F., Farrer, T. J., & Bigler, E. D. (2011). Are effort measures sensitive to cognitive impairment? [Case Reports Validation Studies]. Military Medicine, 176(12), 1426–1431.PubMedCrossRefGoogle Scholar
  150. Yang, X. H., Huang, J., Zhu, C. Y., Wang, Y. F., Cheung, E. F., Chan, R. C., & Xie, G. R. (2014a). Motivational deficits in effort-based decision making in individuals with subsyndromal depression, first-episode and remitted depression patients. Psychiatry Research. doi: 10.1016/j.psychres.2014.08.056.PubMedCentralGoogle Scholar
  151. Yang, Z., Huang, Z., Gonzalez-Castillo, J., Dai, R., Northoff, G., & Bandettini, P. (2014b). Using fMRI to decode true thoughts independent of intention to conceal. [Research Support, N.I.H., Intramural Research Support, Non-U.S. Gov’t]. NeuroImage, 99, 80–92. doi: 10.1016/j.neuroimage.2014.05.034.PubMedPubMedCentralCrossRefGoogle Scholar
  152. Young, G. (2014). Resource material for ethical psychological assessment of symptom and performance validity, including malingering. Psychological Injury and Law, 7(206–235).Google Scholar
  153. Zeineh, M. M., Kang, J., Atlas, S. W., Raman, M. M., Reiss, A. L., Norris, J. L., Montoya, J. G. (2014). Right Arcuate Fasciculus Abnormality in Chronic Fatigue Syndrome. Radiology, 141079. doi:  10.1148/radiol.14141079.
  154. Zhou, Y., Kierans, A., Kenul, D., Ge, Y., Rath, J., Reaume, J., & Lui, Y. W. (2013). Mild traumatic brain injury: longitudinal regional brain volume changes. [Research Support, N.I.H., Extramural]. Radiology, 267(3), 880–890. doi: 10.1148/radiol.13122542.PubMedCentralPubMedCrossRefGoogle Scholar
  155. Zorrilla, E. P., & Koob, G. F. (2013). Amygdalostriatal projections in the neurocircuitry for motivation: a neuroanatomical thread through the career of Ann Kelley. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]. Neuroscience and Biobehavioral Reviews, 37(9 Pt A), 1932–1945. doi: 10.1016/j.neubiorev.2012.11.019.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Psychology and Neuroscience CenterBrigham Young UniversityProvoUSA

Personalised recommendations