Advertisement

Brain Imaging and Behavior

, Volume 10, Issue 1, pp 258–271 | Cite as

Functional MRI in medulloblastoma survivors supports prophylactic reading intervention during tumor treatment

  • Ping Zou
  • Heather M. Conklin
  • Matthew A. Scoggins
  • Yimei Li
  • Xingyu Li
  • Melissa M. Jones
  • Shawna L. Palmer
  • Amar Gajjar
  • Robert J. OggEmail author
Original Research

Abstract

Development of reading skills is vulnerable to disruption in children treated for brain tumors. Interventions, remedial and prophylactic, are needed to mitigate reading and other learning difficulties faced by survivors. A functional magnetic resonance imaging (fMRI) study was conducted to investigate long-term effects of a prophylactic reading intervention administered during radiation therapy in children treated for medulloblastoma. The fMRI study included 19 reading-intervention (age 11.7 ± 0.6 years) and 21 standard-of-care (age 12.1 ± 0.6 years) medulloblastoma survivors, and 21 typically developing children (age 12.3 ± 0.6 years). The survivors were 2.5 [1.2, 5.4] years after completion of tumor therapies and reading-intervention survivors were 2.9 [1.6, 5.9] years after intervention. Five fMRI tasks (Rapid Automatized Naming, Continuous Performance Test using faces and letters, orthographic and phonological processing of letter pairs, implicit word reading, and story reading) were used to probe reading-related neural activation. Woodcock-Johnson Reading Fluency, Word Attack, and Sound Awareness subtests were used to evaluate reading abilities. At the time of fMRI, Sound Awareness scores were significantly higher in the reading-intervention group than in the standard-of-care group (p = 0.046). Brain activation during the fMRI tasks was detected in left inferior frontal, temporal, ventral occipitotemporal, and subcortical regions, and differed among the groups (p < 0.05, FWE). The pattern of group activation differences, across brain areas and tasks, was a normative trend in the reading-intervention group. Standardized reading scores and patterns of brain activation provide evidence of long-term effects of prophylactic reading intervention in children treated for medulloblastoma.

Keywords

Functional magnetic resonance imaging Reading intervention Children Brain tumor Cancer survivors 

Notes

Acknowledgments

This work was supported by the Cancer Center Support (CORE) grant CA21765 from the National Cancer Institute, grant HD049888 from the National Institute for Child Health and Human Development, grant RR029005 from the National Center for Research Resources, and by ALSAC.

Conflict of interest

Ping Zou, Heather M. Conklin, Matthew A. Scoggins, Yimei Li, Xingyu Li, Melissa M. Jones, Shawna L. Palmer, Amar Gaggar, and Robert J. Ogg declare that they have no conflict of interest.

Informed consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all patients for being included in the study.

Supplementary material

11682_2015_9390_MOESM1_ESM.pdf (98 kb)
ESM 1 (PDF 97 kb)
11682_2015_9390_MOESM2_ESM.pdf (76 kb)
ESM 2 (PDF 75 kb)
11682_2015_9390_MOESM3_ESM.pdf (73 kb)
ESM 3 (PDF 73 kb)
11682_2015_9390_MOESM4_ESM.pdf (63 kb)
ESM 4 (PDF 62 kb)
11682_2015_9390_MOESM5_ESM.pdf (55 kb)
ESM 5 (PDF 55 kb)

References

  1. Bitan, T., Burman, D. D., Lu, D., Cone, N. E., Gitelman, D. R., Mesulam, M. M., et al. (2006). Weaker top-down modulation from the left inferior frontal gyrus in children. NeuroImage, 33, 991–998.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Booth, J. R., Wood, L., Lu, D., Houk, J. C., & Bitan, T. (2007). The role of the basal ganglia and cerebellum in language processing. Brain Research, 1133, 136–144.CrossRefPubMedPubMedCentralGoogle Scholar
  3. Butler, R. W., & Haser, J. K. (2006). Neurocognitive effects of treatment for childhood cancer. Mental Retardation and Developmental Disabilities Research Reviews, 12, 184–191.CrossRefPubMedGoogle Scholar
  4. Butler, R. W., Copeland, D. R., Fairclough, D. L., Mulhern, R. K., Katz, E. R., Kazak, A. E., et al. (2008). A multicenter, randomized clinical trial of a cognitive remediation program for childhood survivors of a pediatric malignancy. Journal of Consulting and Clinical Psychology, 76, 367–378.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cohen, L., Martinaud, O., Lemer, C., Lehericy, S., Samson, Y., Obadia, M., et al. (2003). Visual word recognition in the left and right hemispheres: anatomical and functional correlates of peripheral alexias. Cerebral Cortex, 13, 1313–1333.CrossRefPubMedGoogle Scholar
  6. Conklin, H. M., Li, C., Xiong, X., Ogg, R. J., & Merchant, T. E. (2008). Predicting change in academic abilities after conformal radiation therapy for localized ependymoma. Journal of Clinical Oncology, 26, 3965–3970.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Conklin, H. M., Lawford, J., Jasper, B. W., Morris, E. B., Howard, S. C., Ogg, S. W., et al. (2009). Side effects of methylphenidate in childhood cancer survivors: a randomized placebo-controlled trial. Pediatrics, 124, 226–233.CrossRefPubMedPubMedCentralGoogle Scholar
  8. Conklin, H. M., Helton, S., Ashford, J., Mulhern, R. K., Reddick, W. E., Brown, R., et al. (2010a). Predicting methylphenidate response in long-term survivors of childhood cancer: a randomized, double-blind, placebo-controlled, crossover trial. Journal of Pediatric Psychology, 35, 144–155.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Conklin, H. M., Reddick, W. E., Ashford, J., Ogg, S., Howard, S. C., Morris, E. B., et al. (2010b). Long-term efficacy of methylphenidate in enhancing attention regulation, social skills, and academic abilities of childhood cancer survivors. Journal of Clinical Oncology, 28, 4465–4472.CrossRefPubMedPubMedCentralGoogle Scholar
  10. Dennis, M., Spiegler, B. J., Hetherington, C. R., & Greenberg, M. L. (1996). Neuropsychological sequelae of the treatment of children with medulloblastoma. Journal of Neuro-Oncology, 29, 91–101.CrossRefPubMedGoogle Scholar
  11. Friederici, A. D. (2006). What’s in control of language? Nature Neuroscience, 9, 991–992.CrossRefPubMedGoogle Scholar
  12. Gajjar, A., Packer, R. J., Foreman, N. K., Cohen, K., Haas-Kogan, D., & Merchant, T. E. (2013). Children’s Oncology Group’s 2013 blueprint for research: central nervous system tumors. Pediatr. Blood Cancer, 60, 1022–1026.CrossRefGoogle Scholar
  13. Gebauer, D., Fink, A., Kargl, R., Reishofer, G., Koschutnig, K., Purgstaller, C., et al. (2012). Differences in brain function and changes with intervention in children with poor spelling and reading abilities. PLoS ONE, 7, e38201.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gibson, P., Tong, Y., Robinson, G., Thompson, M. C., Currle, D. S., Eden, C., et al. (2010). Subtypes of medulloblastoma have distinct developmental origins. Nature, 468, 1095–1099.CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gillam, R. B., Loeb, D. F., Hoffman, L. M., Bohman, T., Champlin, C. A., Thibodeau, L., et al. (2008). The efficacy of fast ForWord language intervention in school-age children with language impairment: a randomized controlled trial. Journal of Speech, Language, and Hearing Research, 51, 97–119.CrossRefPubMedPubMedCentralGoogle Scholar
  16. Glauser, T. A., & Packer, R. J. (1991). Cognitive deficits in long-term survivors of childhood brain tumors. Childs Nervous System, 7, 2–12.CrossRefGoogle Scholar
  17. Hardy, K. K., Willard, V. W., Allen, T. M., & Bonner, M. J. (2013). Working memory training in survivors of pediatric cancer: a randomized pilot study. Psychooncology, 22, 1856–1865.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ketteler, D., Kastrau, F., Vohn, R., & Huber, W. (2008). The subcortical role of language processing. High level linguistic features such as ambiguity-resolution and the human brain; an fMRI study. NeuroImage, 39, 2002–2009.CrossRefPubMedGoogle Scholar
  19. Kherif, F., Josse, G., & Price, C. J. (2011). Automatic top-down processing explains common left occipito-temporal responses to visual words and objects. Cerebral Cortex, 21, 103–114.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Liang, K. Y., & Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73, 13–22.CrossRefGoogle Scholar
  21. Liu, T. T. (2004). Efficiency, power, and entropy in event-related fMRI with multiple trial types part II: design of experiments. NeuroImage, 21, 401–413.CrossRefPubMedGoogle Scholar
  22. Loeb, D. F., Gillam, R. B., Hoffman, L., Brandel, J., & Marquis, J. (2009). The effects of fast ForWord language on the phonemic awareness and reading skills of school-age children with language impairments and poor reading skills. American Journal of Speech-Language Pathology, 18, 376–387.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Maddrey, A. M., Bergeron, J. A., Lombardo, E. R., McDonald, N. K., Mulne, A. F., Barenberg, P. D., et al. (2005). Neuropsychological performance and quality of life of 10 year survivors of childhood medulloblastoma. Journal of Neuro-Oncology, 72, 245–253.CrossRefPubMedGoogle Scholar
  24. Merchant, T. E., Happersett, L., Finlay, J. L., & Leibel, S. A. (1999). Preliminary results of conformal radiation therapy for medulloblastoma. Neuro-Oncology, 1, 177–187.PubMedPubMedCentralGoogle Scholar
  25. Misra, M., Katzir, T., Wolf, M., & Poldrack, R. A. (2004). Neural Systems for rapid automatized naming in skilled readers: unraveling the RAN-reading relationship. Scientific Studies of Reading, 8, 241–256.CrossRefGoogle Scholar
  26. Mulhern, R. K., Kepner, J. L., Thomas, P. R., Armstrong, F. D., Friedman, H. S., & Kun, L. E. (1998). Neuropsychologic functioning of survivors of childhood medulloblastoma randomized to receive conventional or reduced-dose craniospinal irradiation: a pediatric oncology group study. Journal of Clinical Oncology, 16, 1723–1728.PubMedGoogle Scholar
  27. Mulhern, R. K., Reddick, W. E., Palmer, S. L., Glass, J. O., Elkin, T. D., Kun, L. E., et al. (1999). Neurocognitive deficits in medulloblastoma survivors and white matter loss. Annals of Neurology, 46, 834–841.CrossRefPubMedGoogle Scholar
  28. Mulhern, R. K., Khan, R. B., Kaplan, S., Helton, S., Christensen, R., Bonner, M., et al. (2004). Short-term efficacy of methylphenidate: a randomized, double-blind, placebo-controlled trial among survivors of childhood cancer. Journal of Clinical Oncology, 22, 4795–4803.CrossRefPubMedGoogle Scholar
  29. Mulhern, R. K., Palmer, S. L., Merchant, T. E., Wallace, D., Kocak, M., Brouwers, P., et al. (2005). Neurocognitive consequences of risk-adapted therapy for childhood medulloblastoma. Journal of Clinical Oncology, 23, 5511–5519.CrossRefPubMedGoogle Scholar
  30. Norton, E. S., & Wolf, M. (2012). Rapid automatized naming (RAN) and reading fluency: implications for understanding and treatment of reading disabilities. Annual Review of Psychology, 63, 427–452.CrossRefPubMedGoogle Scholar
  31. Ogg, R. J., Zou, P., Allen, D. N., Hutchins, S. B., Dutkiewicz, R. M., & Mulhern, R. K. (2008). Neural correlates of a clinical continuous performance test. Magnetic Resonance Imaging, 26, 504–512.CrossRefPubMedGoogle Scholar
  32. Palmer, S. L., Leigh, L., Ellison, S. C., Onar-Thomas, A., Wu, S., Qaddoumi, I., et al. (2014). Feasibility and efficacy of a computer-based intervention aimed at preventing reading decoding deficits among children undergoing active treatment for medulloblastoma: results of a randomized trial. Journal of Pediatric Psychology, 39, 450–458.CrossRefPubMedPubMedCentralGoogle Scholar
  33. Price, C. J. (2012). A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. NeuroImage, 62, 816–847.CrossRefPubMedPubMedCentralGoogle Scholar
  34. Price, C. J. (2013). Current themes in neuroimaging studies of reading. Brain and Language, 125, 131–133.CrossRefPubMedPubMedCentralGoogle Scholar
  35. Price, C. J., & Devlin, J. T. (2011). The interactive account of ventral occipitotemporal contributions to reading. Trends in Cognitive Science, 15, 246–253.CrossRefGoogle Scholar
  36. Pugh, K. R., Landi, N., Preston, J. L., Mencl, W. E., Austin, A. C., Sibley, D., et al. (2013). The relationship between phonological and auditory processing and brain organization in beginning readers. Brain and Language, 125, 173–183.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Ramsden, S., Richardson, F. M., Josse, G., Shakeshaft, C., Seghier, M. L., & Price, C. J. (2013). The influence of reading ability on subsequent changes in verbal IQ in the teenage years. Developmental Cognitive Neuroscience, 6, 30–39.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Raschle, N. M., Zuk, J., & Gaab, N. (2012). Functional characteristics of developmental dyslexia in left-hemispheric posterior brain regions predate reading onset. Proceedings of the National Academy of Sciences of the United States of America, 109, 2156–2161.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Ries, M. L., Boop, F. A., Griebel, M. L., Zou, P., Phillips, N. S., Johnson, S. C., et al. (2004). Functional MRI and Wada determination of language lateralization: a case of crossed dominance. Epilepsia, 45, 85–89.CrossRefPubMedGoogle Scholar
  40. Rodgers, S. P., Trevino, M., Zawaski, J. A., Gaber, M. W., & Leasure, J. L. (2013). Neurogenesis, exercise, and cognitive late effects of pediatric radiotherapy. Neural Plasticity, 2013, 698528.CrossRefPubMedPubMedCentralGoogle Scholar
  41. Romine, C. B., & Reynolds, C. R. (2005). A model of the development of frontal lobe functioning: findings from a meta-analysis. Applied Neuropsychology, 12, 190–201.CrossRefPubMedGoogle Scholar
  42. Schreiber, J. E., Gurney, J. G., Palmer, S. L., Bass, J. K., Wang, M., Chen, S., et al. (2014). Examination of risk factors for intellectual and academic outcomes following treatment for pediatric medulloblastoma. Neuro-Oncology, 16(8), 1129–36.CrossRefPubMedPubMedCentralGoogle Scholar
  43. Seghier, M. L., & Price, C. J. (2010). Reading aloud boosts connectivity through the putamen. Cerebral Cortex, 20, 570–582.CrossRefPubMedPubMedCentralGoogle Scholar
  44. Seghier, M. L., & Price, C. J. (2011). Explaining left lateralization for words in the ventral occipitotemporal cortex. Journal of Neuroscience, 31, 14745–14753.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Shaywitz, B. A., Shaywitz, S. E., Blachman, B. A., Pugh, K. R., Fulbright, R. K., Skudlarski, P., et al. (2004). Development of left occipitotemporal systems for skilled reading in children after a phonologically- based intervention. Biological Psychiatry, 55, 926–933.CrossRefPubMedGoogle Scholar
  46. Simos, P. G., Fletcher, J. M., Bergman, E., Breier, J. I., Foorman, B. R., Castillo, E. M., et al. (2002). Dyslexia-specific brain activation profile becomes normal following successful remedial training. Neurology, 58, 1203–1213.CrossRefPubMedGoogle Scholar
  47. Temple, E., Poldrack, R. A., Salidis, J., Deutsch, G. K., Tallal, P., Merzenich, M. M., et al. (2001). Disrupted neural responses to phonological and orthographic processing in dyslexic children: an fMRI study. Neuroreport, 12, 299–307.CrossRefPubMedGoogle Scholar
  48. Temple, E., Deutsch, G. K., Poldrack, R. A., Miller, S. L., Tallal, P., Merzenich, M. M., et al. (2003). Neural deficits in children with dyslexia ameliorated by behavioral remediation: evidence from functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 100, 2860–2865.CrossRefPubMedPubMedCentralGoogle Scholar
  49. Turkeltaub, P. E., Gareau, L., Flowers, D. L., Zeffiro, T. A., & Eden, G. F. (2003). Development of neural mechanisms for reading. Nature Neuroscience, 6, 767–773.CrossRefPubMedGoogle Scholar
  50. Turkeltaub, P. E., Flowers, D. L., Lyon, L. G., & Eden, G. F. (2008). Development of ventral stream representations for single letters. Ann NY Acad Sci, 1145, 13–29.CrossRefPubMedGoogle Scholar
  51. Wolfe, K. R., Madan-Swain, A., Hunter, G. R., Reddy, A. T., Banos, J., & Kana, R. K. (2013). An fMRI investigation of working memory and its relationship with cardiorespiratory fitness in pediatric posterior fossa tumor survivors who received cranial radiation therapy. Pediatric Blood & Cancer, 60, 669–675.CrossRefGoogle Scholar
  52. Woodcock, R. W., McGrew, K. S., & Mather, N. (2001). Woodcock-Johnson tests of achivement (3rd ed.). Rolling Meadows: Riverside Publishing.Google Scholar
  53. Zou, P., Mulhern, R. K., Butler, R. W., Li, C. S., Langston, J. W., & Ogg, R. J. (2005). BOLD responses to visual stimulation in survivors of childhood cancer. NeuroImage, 24, 61–69.CrossRefPubMedGoogle Scholar
  54. Zou, P., Li, Y., Conklin, H. M., Mulhern, R. K., Butler, R. W., & Ogg, R. J. (2012). Evidence of change in brain activity among childhood cancer survivors participating in a cognitive remediation program. Archives of Clinical Neuropsychology, 27, 915–929.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Ping Zou
    • 1
  • Heather M. Conklin
    • 2
  • Matthew A. Scoggins
    • 1
  • Yimei Li
    • 3
  • Xingyu Li
    • 3
  • Melissa M. Jones
    • 1
  • Shawna L. Palmer
    • 2
  • Amar Gajjar
    • 4
  • Robert J. Ogg
    • 1
    Email author
  1. 1.Department of Radiological SciencesSt. Jude Children’s Research HospitalMemphisUSA
  2. 2.Department of PsychologySt. Jude Children’s Research HospitalMemphisUSA
  3. 3.Department of BiostatisticsSt. Jude Children’s Research HospitalMemphisUSA
  4. 4.Department of OncologySt. Jude Children’s Research HospitalMemphisUSA

Personalised recommendations