Skip to main content

Advertisement

Log in

White and grey matter relations to simple, choice, and cognitive reaction time in spina bifida

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Elevated reaction time (RT) is common in brain disorders. We studied three forms of RT in a neurodevelopmental disorder, spina bifida myelomeningocele (SBM), characterized by regional alterations of both white and grey matter, and typically developing individuals aged 8 to 48 years, in order to establish the nature of the lifespan-relations of RT and brain variables. Cognitive accuracy and RT speed and variability were all impaired in SBM relative to the typically developing group, but the most important effects of SBM on RT are seen on tasks that require a cognitive decision rule. Individuals with SBM are impaired not only in speeded performance, but also in the consistency of their performance on tasks that extend over time, which may contribute to poor performance on a range of cognitive tasks. The group with SBM showed smaller corrected corpus callosum proportions, larger corrected cerebellar white matter proportions, and larger corrected proportions for grey matter in the Central Executive and Salience networks. There were clear negative relations between RT measures and corpus callosum, Central Executive, and Default Mode networks in the group with SBM; relations were not observed in typically developing age peers. Statistical mediation analyses indicated that corpus callosum and Central Executive Network were important mediators. While RT is known to rely heavily on white matter under conditions of typical development and in individuals with adult-onset brain injury, we add the new information that additional involvement of grey matter may be important for a key neuropsychological function in a common neurodevelopmental disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

CEN:

Central executive network

DMN:

Default mode network

GM:

Grey matter

IQ:

Intelligence quotient

ms:

Millisecond

ROI:

Region of interest

RT:

Reaction time

SBM:

Spina bifida myelomeningocele

SES:

Socioeconomic status

SN:

Salience network

TD:

Typically developing

WM:

White matter

References

  • Achiron, A., Doniger, G. M., Harel, Y., Appleboim-Gavish, N., Lavie, M., & Simon, E. S. (2007). Prolonged response times characterize cognitive performance in multiple sclerosis. [Comparative Study]. European Journal of Neurology, 14(10), 1102–1108. doi:10.1111/j.1468-1331.2007.01909.x.

    Article  CAS  PubMed  Google Scholar 

  • Adolphs, R. (2010). What does the amygdala contribute to social cognition? Annals of the New York Academy of Sciences, 1191, 42–61. doi:10.1111/j.1749-6632.2010.05445.x.

    Article  PubMed  PubMed Central  Google Scholar 

  • Anderson, V., Catroppa, C., Morse, S., Haritou, F., & Rosenfeld, J. (2005). Attentional and processing skills following traumatic brain injury in early childhood. Brain Injury, 19(9), 699–710. doi:10.1080/02699050400025281.

    Article  CAS  PubMed  Google Scholar 

  • Anstey, K. J., Mack, H. A., Christensen, H., Li, S. C., Reglade-Meslin, C., Maller, J., et al. (2007). Corpus callosum size, reaction time speed and variability in mild cognitive disorders and in a normative sample. Neuropsychologia, 45(8), 1911–1920. doi:10.1016/j.neuropsychologia.2006.11.020.

    Article  PubMed  Google Scholar 

  • Benes, F. M., Turtle, M., Khan, Y., & Farol, P. (1994). Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence, and adulthood. Archives of General Psychiatry, 51(6), 477–484. doi:10.1001/archpsyc.1994.03950060041004.

    Article  CAS  PubMed  Google Scholar 

  • Bonnelle, V., Ham, T. E., Leech, R., Kinnunen, K. M., Mehta, M. A., Greenwood, R. J., et al. (2012). Salience network integrity predicts default mode network function after traumatic brain injury. Proceedings of the National Academy of Sciences of the United States of America, 109(12), 4690–4695. doi:10.1073/pnas.1113455109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brewer, V. R., Fletcher, J. M., Hiscock, M., & Davidson, K. C. (2001). Attention processes in children with shunted hydrocephalus versus attention deficit-hyperactivity disorder. Neuropsychology, 15(2), 185–198. doi:10.1037/0894-4105.15.2.185.

    Article  CAS  PubMed  Google Scholar 

  • Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38. doi:10.1196/annals.1440.011.

    Article  PubMed  Google Scholar 

  • Dennis, M., & Barnes, M. A. (2010). The cognitive phenotype of spina bifida meningomyelocele. Developmental Disabilities Research Reviews, 16(1), 31–39. doi:10.1002/ddrr.89.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dennis, M., Edelstein, K., Copeland, K., Frederick, J., Francis, D. J., Hetherington, R., et al. (2005a). Covert orienting to exogenous and endogenous cues in children with spina bifida. Neuropsychologia, 43(6), 976–987. doi:10.1016/j.neuropsychologia.2004.08.012.

    Article  PubMed  Google Scholar 

  • Dennis, M., Edelstein, K., Copeland, K., Frederick, J. A., Francis, D. J., Hetherington, R., et al. (2005b). Space-based inhibition of return in children with spina bifida. Neuropsychology, 19(4), 456–465. doi:10.1037/0894-4105.19.4.456.

    Article  PubMed  Google Scholar 

  • Dennis, M., Landry, S. H., Barnes, M., & Fletcher, J. M. (2006). A model of neurocognitive function in spina bifida over the life span. Journal of the International Neuropsychological Society, 12(2), 285–296. doi:10.1017/S1355617706060371.

    Article  PubMed  Google Scholar 

  • Dennis, M., Francis, D. J., Cirino, P. T., Schachar, R., Barnes, M. A., & Fletcher, J. M. (2009). Why IQ is not a covariate in cognitive studies of neurodevelopmental disorders. Journal of the International Neuropsychological Society, 15(3), 331–343. doi:10.1017/S1355617709090481.

    Article  PubMed  PubMed Central  Google Scholar 

  • Der, G., & Deary, I. J. (2006). Age and sex differences in reaction time in adulthood: results from the United Kingdom Health and Lifestyle Survey. Psychology and Aging, 21(1), 62–73. doi:10.1037/0882-7974.21.1.62.

    Article  PubMed  Google Scholar 

  • Fletcher, J. M., Copeland, K., Frederick, J. A., Blaser, S. E., Kramer, L. A., Northrup, H., et al. (2005). Spinal lesion level in spina bifida: a source of neural and cognitive heterogeneity. Journal of Neurosurgery, 102(3 Suppl), 268–279. doi:10.3171/ped.2005.102.3.0268.

    PubMed  Google Scholar 

  • Gorus, E., De Raedt, R., & Mets, T. (2006). Diversity, dispersion and inconsistency of reaction time measures: effects of age and task complexity. Aging Clinical and Experimental Research, 18(5), 407–417. doi:10.1007/BF03324837.

    Article  PubMed  Google Scholar 

  • Gu, X., Liu, X., Van Dam, N. T., Hof, P. R., & Fan, J. (2013). Cognition-emotion integration in the anterior insular cortex. Cerebral Cortex, 23(1), 20–27. doi:10.1093/cercor/bhr367.

    Article  PubMed  PubMed Central  Google Scholar 

  • Han, X., Jovicich, J., Salat, D., van der Kouwe, A., Quinn, B., Czanner, S., et al. (2006). Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. NeuroImage, 32(1), 180–194. doi:10.1016/j.neuroimage.2006.02.051.

    Article  PubMed  Google Scholar 

  • Hasan, K. M., Eluvathingal, T. J., Kramer, L. A., Ewing-Cobbs, L., Dennis, M., & Fletcher, J. M. (2008). White matter microstructural abnormalities in children with spina bifida myelomeningocele and hydrocephalus: a diffusion tensor tractography study of the association pathways. Journal of Magnetic Resonance Imaging, 27(4), 700–709. doi:10.1002/jmri.21297.

    Article  PubMed  PubMed Central  Google Scholar 

  • Heath, M., Grierson, L., Binsted, G., & Elliott, D. (2007). Interhemispheric transmission time in persons with Down syndrome. Journal of Intellectual Disability Research, 51(Pt 12), 972–981. doi:10.1111/j.1365-2788.2007.01009.x.

    Article  CAS  PubMed  Google Scholar 

  • Hultsch, D. F., MacDonald, S. W., Hunter, M. A., Levy-Bencheton, J., & Strauss, E. (2000). Intraindividual variability in cognitive performance in older adults: comparison of adults with mild dementia, adults with arthritis, and healthy adults. Neuropsychology, 14(4), 588–598. doi:10.1037/0894-4105.14.4.588.

    Article  CAS  PubMed  Google Scholar 

  • Hultsch, D. F., MacDonald, S. W., & Dixon, R. A. (2002). Variability in reaction time performance of younger and older adults. Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 57(2), 101–115. doi:10.1093/geronb/57.2.P101.

    Article  Google Scholar 

  • Jovicich, J., Czanner, S., Han, X., Salat, D., van der Kouwe, A., Quinn, B., et al. (2009). MRI-derived measurements of human subcortical, ventricular and intracranial brain volumes: reliability effects of scan sessions, acquisition sequences, data analyses, scanner upgrade, scanner vendors and field strengths. NeuroImage, 46(1), 177–192. doi:10.1016/j.neuroimage.2009.02.010.

    Article  PubMed  PubMed Central  Google Scholar 

  • Juranek, J., & Salman, M. S. (2010). Anomalous development of brain structure and function in spina bifida myelomeningocele. Developmental Disabilities Research Reviews, 16(1), 23–30. doi:10.1002/ddrr.88.

    Article  PubMed  PubMed Central  Google Scholar 

  • Juranek, J., Fletcher, J. M., Hasan, K. M., Breier, J. I., Cirino, P. T., Pazo-Alvarez, P., et al. (2008). Neocortical reorganization in spina bifida. NeuroImage, 40(4), 1516–1522. doi:10.1016/j.neuroimage.2008.01.043.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kail, R. (1993). Processing time decreases globally at an exponential rate during childhood and adolescence. Journal of Experimental Child Psychology, 56(2), 254–265. doi:10.1006/jecp.1993.1034.

    Article  CAS  PubMed  Google Scholar 

  • Kourtidou, P., McCauley, S. R., Bigler, E. D., Traipe, E., Wu, T. C., Chu, Z. D., et al. (2013). Centrum semiovale and corpus callosum integrity in relation to information processing speed in patients with severe traumatic brain injury. The Journal of Head Trauma Rehabilitation, 28(6), 433–441. doi:10.1097/HTR.0b013e3182585d06.

    Article  PubMed  Google Scholar 

  • Lew, H. L., Thomander, D., Gray, M., & Poole, J. H. (2007). The effects of increasing stimulus complexity in event-related potentials and reaction time testing: clinical applications in evaluating patients with traumatic brain injury. Journal of Clinical Neurophysiology, 24(5), 398–404. doi:10.1097/WNP.0b013e318150694b.

    Article  PubMed  Google Scholar 

  • Luks, T. L., Oliveira, M., Possin, K. L., Bird, A., Miller, B. L., Weiner, M. W., et al. (2010). Atrophy in two attention networks is associated with performance on a Flanker task in neurodegenerative disease. Neuropsychologia, 48(1), 165–170. doi:10.1016/j.neuropsychologia.2009.09.001.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mabbott, D. J., Noseworthy, M. D., Bouffet, E., Rockel, C., & Laughlin, S. (2006). Diffusion tensor imaging of white matter after cranial radiation in children for medulloblastoma: correlation with IQ. Neuro-Oncology, 8(3), 244–252. doi:10.1215/15228517-2006-002.

    Article  PubMed  PubMed Central  Google Scholar 

  • Menon, V. (2011). Large-scale brain networks and psychopathology: a unifying triple network model. Trends in Cognitive Science, 15(10), 483–506. doi:10.1016/j.tics.2011.08.003.

    Article  Google Scholar 

  • Menon, V., & Uddin, L. Q. (2010). Saliency, switching, attention and control: a network model of insula function. Brain Structure and Function, 214(5–6), 655–667. doi:10.1007/s00429-010-0262-0.

    Article  PubMed  PubMed Central  Google Scholar 

  • Menzies, L., Achard, S., Chamberlain, S. R., Fineberg, N., Chen, C. H., del Campo, N., et al. (2007). Neurocognitive endophenotypes of obsessive-compulsive disorder. Brain, 130(Pt 12), 3223–3236. doi:10.1093/brain/awm205.

    Article  PubMed  Google Scholar 

  • Niogi, S. N., Mukherjee, P., Ghajar, J., Johnson, C., Kolster, R. A., Sarkar, R., et al. (2008). Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: a 3T diffusion tensor imaging study of mild traumatic brain injury. AJNR - American Journal of Neuroradiology, 29(5), 967–973. doi:10.3174/ajnr.A0970.

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell, S., Noseworthy, M. D., Levine, B., & Dennis, M. (2005). Cortical thickness of the frontopolar area in typically developing children and adolescents. NeuroImage, 24(4), 948–954. doi:10.1016/j.neuroimage.2004.10.014.

    Article  PubMed  Google Scholar 

  • Palmer, S. L., Armstrong, C., Onar-Thomas, A., Wu, S., Wallace, D., Bonner, M. J., et al. (2013). Processing speed, attention, and working memory after treatment for medulloblastoma: an international, prospective, and longitudinal study. Journal of Clinical Oncology, 31(28), 3494–3500. doi:10.1200/JCO.2012.47.4775.

    Article  PubMed  PubMed Central  Google Scholar 

  • Perneczky, R., Ghosh, B. C., Hughes, L., Carpenter, R. H., Barker, R. A., & Rowe, J. B. (2011). Saccadic latency in Parkinson’s disease correlates with executive function and brain atrophy, but not motor severity. Neurobiology of Disease, 43(1), 79–85. doi:10.1016/j.nbd.2011.01.032.

    Article  PubMed  PubMed Central  Google Scholar 

  • Prigatano, G. P., Zeiner, H. K., Pollay, M., & Kaplan, R. J. (1983). Neuropsychological functioning in children with shunted uncomplicated hydrocephalus. Child’s Brain, 10(2), 112–120. doi:10.1159/000120104.

    CAS  PubMed  Google Scholar 

  • Ratcliff, R., Thapar, A., & McKoon, G. (2001). The effects of aging on reaction time in a signal detection task. Psychology and Aging, 16(2), 323–341. doi:10.1037/0882-7974.16.2.323.

    Article  CAS  PubMed  Google Scholar 

  • Schatz, J., Kramer, J. H., Ablin, A., & Matthay, K. K. (2000). Processing speed, working memory, and IQ: a developmental model of cognitive deficits following cranial radiation therapy. Neuropsychology, 14(2), 189–200. doi:10.1037/0894-4105.14.2.189.

    Article  CAS  PubMed  Google Scholar 

  • Singer, T., Seymour, B., O’Doherty, J. P., Stephan, K. E., Dolan, R. J., & Frith, C. D. (2006). Empathic neural responses are modulated by the perceived fairness of others. Nature, 439(7075), 466–469. doi:10.1038/nature04271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sridharan, D., Levitin, D. J., & Menon, V. (2008). A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences of the United States of America, 105(34), 12569–12574. doi:10.1073/pnas.0800005105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tew, B., Laurence, K., & Richards, A. (1980). Inattention among children with hydrocephalus and spina bifida. Zeitschrift für Kinderchirurgie, 31, 381–385. doi:10.1055/s-2008-1066449.

    Google Scholar 

  • Treble, A., Juranek, J., Stuebing, K. K., Dennis, M., & Fletcher, J. M. (2013). Functional significance of atypical cortical organization in spina bifida myelomeningocele: relations of cortical thickness and gyrification with IQ and fine motor dexterity. Cerebral Cortex, 23(10), 2357–2369. doi:10.1093/cercor/bhs226.

    Article  PubMed  PubMed Central  Google Scholar 

  • Turken, A., Whitfield-Gabrieli, S., Bammer, R., Baldo, J. V., Dronkers, N. F., & Gabrieli, J. D. (2008). Cognitive processing speed and the structure of white matter pathways: convergent evidence from normal variation and lesion studies. NeuroImage, 42(2), 1032–1044. doi:10.1016/j.neuroimage.2008.03.057.

    Article  PubMed  PubMed Central  Google Scholar 

  • Walhovd, K. B., & Fjell, A. M. (2007). White matter volume predicts reaction time instability. Neuropsychologia, 45(10), 2277–2284. doi:10.1016/j.neuropsychologia.2007.02.022.

    Article  PubMed  Google Scholar 

  • Ware, A. L., Juranek, J., Williams, V. J., Cirino, P. T., Dennis, M., & Fletcher, J. M. (2014). Anatomical and diffusion MRI of deep gray matter in pediatric spina bifida. NeuroImage: Clinical. doi:10.1016/j.nicl.2014.05.012.

    Google Scholar 

  • Wiedenbauer, G., & Jansen-Osmann, P. (2007). Mental rotation ability of children with spina bifida: what influence does manual rotation training have? Developmental Neuropsychology, 32(3), 809–824. doi:10.1080/87565640701539626.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Eunice Kennedy Shriver National Institute of Child Health and Human Development Grant (P01 HD35946-06, “Spina Bifida: Cognitive and Neurobiological Variability”). The content is solely the responsibility of the authors and does not necessarily represent the official views of the Eunice Kennedy Shriver National Institute of Child Health and Human Development or the National Institutes of Health. We thank Caroline Roncadin for assistance with the adapting her RT paradigms for the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nevena Simic.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 105 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dennis, M., Cirino, P.T., Simic, N. et al. White and grey matter relations to simple, choice, and cognitive reaction time in spina bifida. Brain Imaging and Behavior 10, 238–251 (2016). https://doi.org/10.1007/s11682-015-9388-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-015-9388-2

Keywords

Navigation