Skip to main content
Log in

Physiologic artifacts in resting state oscillations in young children: methodological considerations for noisy data

  • SI: Developing Brain
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

We quantified the potential effects of physiologic artifact on the estimation of EEG band power in a cohort of typically developing children in order to guide artifact rejection methods in quantitative EEG data analysis in developmental populations. High density EEG was recorded for 2 min while children, ages 2–6, watched a video of bubbles. Segments of data were categorized as blinks, saccades, EMG or artifact-free, and both absolute and relative power in the theta (4–7 Hz), alpha (8–12 Hz), beta (13–30 Hz) and gamma (35–45 Hz) bands were calculated in 9 regions for each category. Using a linear mixed model approach with artifact type, region and their interaction as predictors, we compared mean band power between clean data and each type of artifact. We found significant differences in mean relative and absolute power between artifacts and artifact-free segments in all frequency bands. The magnitude and direction of the differences varied based on power type, region, and frequency band. The most significant differences in mean band power were found in the gamma band for EMG artifact and the theta band for ocular artifacts. Artifact detection strategies need to be sensitive to the oscillations of interest for a given analysis, with the most conservative approach being the removal of all EMG and ocular artifact from EEG data. Quantitative EEG holds considerable promise as a clinical biomarker of both typical and atypical development. However, there needs to be transparency in the choice of power type, regions of interest, and frequency band, as each of these variables are differentially vulnerable to noise, and therefore, their interpretation depends on the methods used to identify and remove artifacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barry, R. J., Clarke, A. R., Hajos, M., McCarthy, R., Selikowitz, M., & Dupuy, F. E. (2010). Resting-state EEG gamma activity in children with attention-deficit/hyperactivity disorder. Clinical Neurophysiology, 121(11), 1871–77.

    Article  PubMed  Google Scholar 

  • Benninger, C., Matthis, P., & Scheffner, D. (1984). EEG development of healthy boys and girls. Results of a longitudinal study. Electroencephalography and Clinical Neurophysiology, 57(1), 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Bonfiglio, L., Olcese, U., Rossi, B., Frisoli, A., Arrighi, P., Greco, G., Carozzo, S., Andre, P., Bergamasco, M., & Carboncini, M. C. (2013). Cortical source of blink-related delta oscillations and their correlation with levels of consciousness. Human Brain Mapping, 34(9), 2178–89.

    Article  PubMed  Google Scholar 

  • Bosl, W., Tierney, A., Tager-Flusberg, H., & Nelson, C. (2011). EEG complexity as a biomarker for autism spectrum disorder risk. BMC Medicine, 9, 18.

    Article  PubMed Central  PubMed  Google Scholar 

  • Cantor, D. S., & Chabot, R. (2009). QEEG studies in the assessment and treatment of childhood disorders. Clinical EEG and Neuroscience, 40(2), 113–21.

    Article  PubMed  Google Scholar 

  • Clarke, A. R., Barry, R. J., Dupuy, F. E., Heckel, L. D., McCarthy, R., Selikowitz, M., & Johnstone, S. J. (2011). Behavioural differences between EEG-defined subgroups of children with Attention-Deficit/Hyperactivity Disorder. Clinical Neurophysiology, 122(7), 1333–41.

    Article  PubMed  Google Scholar 

  • Dawson, G., Jones, E. J., Merkle, K., Venema, K., Lowy, R., Faja, S., & Webb, S. J. (2012). Early behavioral intervention is associated with normalized brain activity in young children with autism. Journal of the American Academy of Child and Adolescent Psychiatry, 51(11), 1150–59.

    Article  PubMed Central  PubMed  Google Scholar 

  • Deen, B., & Pelphrey, K. (2012). Perspective: brain scans need a rethink. Nature, 491(7422), S20.

    Article  CAS  PubMed  Google Scholar 

  • Drongelen, W. (2007). Signal processing for neuroscientists : introduction to the analysis of physiological signals. Amsterdam. Burlington: Elsevier/Academic Press.

    Google Scholar 

  • Elliott, C. D. (1993). Differential abilities scale (DAS). Child Assessment News, 3, 1–10.

    Google Scholar 

  • Ferree, T. C., Luu, P., Russell, G. S., & Tucker, D. M. (2001). Scalp electrode impedance, infection risk, and EEG data quality. Clinical Neurophysiology, 112(3), 536–44.

    Article  CAS  PubMed  Google Scholar 

  • Fletcher, E. M., Kussmaul, C. L., & Mangun, G. R. (1996). Estimation of interpolation errors in scalp topographic mapping. Electroencephalography and Clinical Neurophysiology, 98(5), 422–34.

    Article  CAS  PubMed  Google Scholar 

  • Freeman, W. J., Holmes, M. D., Burke, B. C., & Vanhatalo, S. (2003). Spatial spectra of scalp EEG and EMG from awake humans. Clinical Neurophysiology, 114(6), 1053–68.

    Article  PubMed  Google Scholar 

  • Goncharova, I. I., McFarland, D. J., Vaughan, T. M., & Wolpaw, J. R. (2003). EMG contamination of EEG: spectral and topographical characteristics. Clinical Neurophysiology, 114(9), 1580–93.

    Article  CAS  PubMed  Google Scholar 

  • Gou, Z., Choudhury, N., & Benasich, A. A. (2011). Resting frontal gamma power at 16, 24 and 36 months predicts individual differences in language and cognition at 4 and 5 years. Behavioural Brain Research, 220(2), 263–70.

    Article  PubMed Central  PubMed  Google Scholar 

  • Grasser, T., Lothar, S., & Joachim, M. (1985). The transfer of EOG activity into the EEG for eyes open and closed. Electroencephalography and Clinical Neurophysiology, 61, 181–93.

    Article  Google Scholar 

  • Gratton, G., Coles, M. G., & Donchin, E. (1983). A new method for off-line removal of ocular artifact. Electroencephalography and Clinical Neurophysiology, 55(4), 468–84.

    Article  CAS  PubMed  Google Scholar 

  • Hagemann, D., & Naumann, E. (2001). The effects of ocular artifacts on (lateralized) broadband power in the EEG. Clinical Neurophysiology, 112(2), 215–31.

    Article  CAS  PubMed  Google Scholar 

  • Iacono, W. G., & Lykken, D. T. (1981). Two-year retest stability of eye tracking performance and a comparison of electro-oculographic and infrared recording techniques: evidence of EEG in the electro-oculogram. Psychophysiology, 18(1), 49–55.

    Article  CAS  PubMed  Google Scholar 

  • Jasper, H. H. (1958). The ten-twenty electrode system of the International Federation. Electroencephalography and Clinical Neurophysiology, 10, 371–75.

    Google Scholar 

  • Jeste SS, Kirkham N, Senturak D, Hasenstab K, Sugar C, Kupelian C, Baker E, Sanders AJ, Shimizu C, Norona A, Paparella T, Freeman S, Johnson SP. Dev Sci 2014; Electrophysiological evidence of heterogeneity in visual statistical learning in young children with ASD. June 11. Epub ahead of print.

  • John, E. R., Ahn, H., Prichep, L., Trepetin, M., Brown, D., & Kaye, H. (1980). Developmental equations for the electroencephalogram. Science, 210(4475), 1255–58.

    Article  CAS  PubMed  Google Scholar 

  • Jung, T. P., Makeig, S., Westerfield, M., Townsend, J., Courchesne, E., & Sejnowski, T. J. (2000). Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clinical Neurophysiology, 111(10), 1745–58.

    Article  CAS  PubMed  Google Scholar 

  • Keil, A., Debener, S., Gratton, G., Junghofer, M., Kappenman, E. S., Luck, S. J., Luu, P., Miller, G. A., & Yee, C. M. (2014). Committee report: Publication guidelines and recommendations for studies using electroencephalography and magnetoencephalography. Psychophysiology , 51(1), 1–21.

    Article  PubMed  Google Scholar 

  • Keren, A. S., Yuval-Greenberg, S., & Deouell, L. Y. (2010). Saccadic spike potentials in gamma-band EEG: characterization, detection and suppression. Neuroimage, 49(3), 2248–2263.

    Article  PubMed  Google Scholar 

  • Leuchter, A. F., Cook, I. A., Marangell, L. B., Gilmer, W. S., Bugoyne, K. S., Howland, R. H., Trivedi, M. H., Zisook, S., Jain, R., McCracken, J. T., Fava, M., Iosifescu, D., & Greenwald, S. (2009). Comparative effectiveness of biomarkers and clinical indicators for predicting outcomes of SSRI treatment in major depressive disorder: results of the BRITE-MD study. Psychiatry Research, 169(2), 124–31.

    Article  CAS  PubMed  Google Scholar 

  • Loo, S. K., & Makeig, S. (2012). Clinical utility of EEG in attention-deficit/hyperactivity disorder: a research update. Neurotherapeutics, 9(3), 569–87.

    Article  PubMed Central  PubMed  Google Scholar 

  • Luckhaus, C., Grass-Kapanke, B., Blaeser, I., Ihl, R., Supprian, T., Winterer, G., & Brinkmeyer, J. (2008). Quantitative EEG in progressing vs stable mild cognitive impairment (MCI): results of a 1-year follow-up study. International Journal of Geriatric Psychiatry, 23(11), 1148–55.

    Article  PubMed  Google Scholar 

  • Marshall, P. J., Bar-Haim, Y., & Fox, N. A. (2002). Development of the EEG from 5 months to 4 years of age. Clinical Neurophysiology, 113(8), 1199–1208.

    Article  PubMed  Google Scholar 

  • Monastra, V. J., Lubar, J. R., Linden, M., VanDeusen, P., Green, G., Wing, W., Phillips, A., & Fenger, T. N. (1999). Assessing attention deficit hyperactivity disorder via quantitative electroencephalography: an initial validation study. Neuropsychology, 13(3), 424–33.

    Article  CAS  PubMed  Google Scholar 

  • Mullen, E. M. (1995). Mullen scales of early learning: AGS edition. Circle Pines: American Guidance Service.

    Google Scholar 

  • Nunez, P. L., & Srinivasan, R. (2006). Electric fields of the brain: the neurophysics of EEG (2nd ed.). Oxford. New York: Oxford University Press.

    Book  Google Scholar 

  • Oh, J., Han, M., Peterson, B. S., & Jeong, J. (2012). Spontaneous eyeblinks are correlated with responses during the Stroop task. PLoS One, 7(4), e34871.

  • Onton, J., Westerfield, M., Townsend, J., & Makeig, S. (2006). Imaging human EEG dynamics using independent component analysis. Neuroscience and Biobehavioral Reviews, 30(6), 808–22.

    Article  PubMed  Google Scholar 

  • Perrin, F., Pernier, J., Bertrand, O., Giard, M. H., & Echallier, J. F. (1987). Mapping of scalp potentials by surface spline interpolation. Electroencephalography and Clinical Neurophysiology, 66(1), 75–81.

    Article  CAS  PubMed  Google Scholar 

  • Picton, T. W., Bentin, S., Berg, P., Donchin, E., Hillyard, S. A., Johnson, R., Miller, G. A., Ritter, W., Ruchkin, D. S., Rugg, M. D., & Taylor, M. J. (2000). Guidelines for using human even-related potentials to study cognition: Recording standards and publication ciriteria. Psychophysiology, 37(2), 127–52.

    Article  CAS  PubMed  Google Scholar 

  • Pivik, R. T., Broughton, R. J., Coppola, R., Davidson, R. J., Fox, N., & Nuwer, M. R. (1993). Guidelines for the recording and quantatative analysis of electroencephalographic activity in research contexts. Psychophysiology, 30(6), 547–58.

    Article  CAS  PubMed  Google Scholar 

  • Pizzagalli, D. (2007). Electroencephalography and high-density electrophysiological source localization. In J. Cacioppo, L. G. Tassinary, & G. G. Berntson (Eds.), The handbook of psychophysiology (pp. 56–85). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L., & Petersen, S. E. (2012). Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. NeuroImage, 59, 2142–54.

    Article  PubMed Central  PubMed  Google Scholar 

  • Saby, J. N., & Marshall, P. J. (2012). The utility of EEG band power analysis in the study of infancy and early childhood. Developmental Neuropsychology, 37(3), 253–73.

    Article  PubMed Central  PubMed  Google Scholar 

  • Satterthwaite, T. D., Wolf, D. H., Loughead, J., Ruparel, K., Elliot, M. A., Hakonarson, H., Gur, R. C., & Gur, R. E. (2012). Impact of in-scanner head motion on multiple measures of functional connectivity: relevance for studies of neurodevelopment in youth. NeuroImage, 60(1), 623–32.

    Article  PubMed Central  PubMed  Google Scholar 

  • Slifer, K. J., Avis, K. T., & Frutchey, R. A. (2008). Behavioral intervention to increase compliance with electroencephalographic procedures in children with developmental disabilities. Epilepsy and Behavior, 13(1), 189–95.

    Article  PubMed Central  PubMed  Google Scholar 

  • Snyder, S. M., & Hall, J. R. (2006). A meta-analysis of quantitative EEG power associated with attention-deficit hyperactivity disorder. Journal of Clinical Neurophysiology, 23(5), 440–55.

    Article  PubMed  Google Scholar 

  • Sparrow, S. S., Cicchetti, D. V., & Balla, D. A. (2005). Vineland adaptive behavior scales (2nd ed.). Livonia: Pearson Assessments.

    Google Scholar 

  • Srinivasan, R., Nunez, P. L., Tucker, D. M., Silberstein, R. B., & Cadusch, P. J. (1996). Spatial sampling and filtering of EEG with spline laplacians to estimate cortical potentials. Brain Topography, 8(4), 355–66.

    Article  CAS  PubMed  Google Scholar 

  • Swingler, M. M., Willoughby, M. T., & Calkins, S. D. (2011). EEG power and coherence during preschoolers’ performance of an executive function battery. Developmental Psychobiology, 53(8), 771–84.

    Article  PubMed  Google Scholar 

  • Tierney, A. L., Gabard-Durnam, L., Vogel-Farley, V., Tager-Flusberg, H., & Nelson, C. A. (2012). Developmental trajectories of resting EEG power: an endophenotype of autism spectrum disorder. PLoS ONE, 7(6), e39127.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Uhlhaas, P. J., Roux, F., Rodriguez, E., Rotarska-Jagiela, A., & Singer, W. (2010). Neural synchrony and the development of cortical networks. Trends in Cognitive Sciences, 14(2), 72–80.

    Article  PubMed  Google Scholar 

  • Van Dijk, K. R., Sabuncu, M. R., & Buckner, R. L. (2012). The influence of head motion on intrinsic functional connectivity MRI. NeuroImage, 59(1), 431–38.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wang, J., Barstein, J., Ethridge, L. E., Mosconi, M. W., Takarae, Y., & Sweeney, J. A. (2013). Resting state EEG abnormalities in autism spectrum disorders. Journal of Neurodevelopmental Disorders, 5(1), 24.

    Article  PubMed Central  PubMed  Google Scholar 

  • Webb SJ, Bernier R, Henderson HA, Johnson MH, Jones EJ, Lerner MD, Westerfield M. Guidelines and Best Practices for Electrophysiological Data Collection, Analysis and Reporting in Autism. J Autism Dev Disord 2013

  • Whitham, E. M., Pope, K. J., Fitzgibbon, S. P., Lewis, T., Clark, C. R., Loveless, S., Broberg, M., Wallace, A., DeLosAngeles, D., Lillie, P., Hardy, A., Fronsko, R., Pulbrook, A., & Willoughby, J. O. (2007). Scalp electrical recording during paralysis: quantatative evidence that EEG frequencies above 20 Hz are contaminated by EMG. Clinical Neurophysiology, 118(8), 1877–88.

    Article  PubMed  Google Scholar 

  • Yuval-Greenberg, S., & Deouell, L. Y. (2009). The broadband-transient induced gamma-band response in scalp EEG reflects the execution of saccades. Brain Topography, 22(1), 3–6.

    Article  PubMed  Google Scholar 

  • Yuval-Greenberg, S., Tomer, O., Keren, A. S., Nelken, I., & Deouell, L. Y. (2008). Transient induced gamma-band response in EEG as a manifestation of miniature saccades. Neuron, 58(3), 429–41.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was funded by NIMH 5K23MH094517 – 02 (PI Jeste) and the Autism Speaks Weatherstone Predoctoral Fellowship 7845 (McEvoy, Kevin).

Conflict of Interest

Kevin McEvoy Kyle Hasenstab, Damla Senturk, Andrew Sanders, and Shafali S. Jeste declare that they have no conflicts of interest.

Informed Consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all patients for being included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shafali S. Jeste.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McEvoy, K., Hasenstab, K., Senturk, D. et al. Physiologic artifacts in resting state oscillations in young children: methodological considerations for noisy data. Brain Imaging and Behavior 9, 104–114 (2015). https://doi.org/10.1007/s11682-014-9343-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-014-9343-7

Keywords

Navigation