Participation in cognitively-stimulating activities is associated with brain structure and cognitive function in preclinical Alzheimer’s disease

Abstract

This study tested the hypothesis that frequent participation in cognitively-stimulating activities, specifically those related to playing games and puzzles, is beneficial to brain health and cognition among middle-aged adults at increased risk for Alzheimer’s disease (AD). Three hundred twenty-nine cognitively normal, middle-aged adults (age range, 43.2–73.8 years) enrolled in the Wisconsin Registry for Alzheimer’s Prevention (WRAP) participated in this study. They reported their current engagement in cognitive activities using a modified version of the Cognitive Activity Scale (CAS), underwent a structural MRI scan, and completed a comprehensive cognitive battery. FreeSurfer was used to derive gray matter (GM) volumes from AD-related regions of interest (ROIs), and composite measures of episodic memory and executive function were obtained from the cognitive tests. Covariate-adjusted least squares analyses were used to examine the association between the Games item on the CAS (CAS-Games) and both GM volumes and cognitive composites. Higher scores on CAS-Games were associated with greater GM volumes in several ROIs including the hippocampus, posterior cingulate, anterior cingulate, and middle frontal gyrus. Similarly, CAS-Games scores were positively associated with scores on the Immediate Memory, Verbal Learning & Memory, and Speed & Flexibility domains. These findings were not modified by known risk factors for AD. In addition, the Total score on the CAS was not as sensitive as CAS-Games to the examined brain and cognitive measures. For some individuals, participation in cognitive activities pertinent to game playing may help prevent AD by preserving brain structures and cognitive functions vulnerable to AD pathophysiology.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Alexander, G. E., Bergfield, K. L., Chen, K., Reiman, E. M., Hanson, K. D., Lin, L., et al. (2012). Gray matter network associated with risk for Alzheimer’s disease in young to middle-aged adults. Neurobiol Aging, 33(12), 2723–2732. doi:10.1016/j.neurobiolaging.2012.01.014.

    PubMed Central  Article  PubMed  Google Scholar 

  2. Alzheimer’s Association. (2013). 2013 Alzheimer’s disease facts and figures. Alzheimers Dement, 9(2), 208–245. doi:10.1016/j.jalz.2013.02.003.

    Article  Google Scholar 

  3. ASA-Metlife Foundation. (2006). Attitudes and awareness of brain health poll. San Francisco: American Society on Aging.

    Google Scholar 

  4. Blacker, D., Lee, H., Muzikansky, A., Martin, E. C., Tanzi, R., McArdle, J. J., et al. (2007). Neuropsychological measures in normal individuals that predict subsequent cognitive decline. Arch Neurol, 64(6), 862–871. doi:10.1001/archneur.64.6.862.

    Article  PubMed  Google Scholar 

  5. Carlson, M. C., Parisi, J. M., Xia, J., Xue, Q. L., Rebok, G. W., Bandeen-Roche, K., et al. (2012). Lifestyle activities and memory: variety may be the spice of life. The women’s health and aging study II. J Int Neuropsychol Soc, 18(2), 286–294. doi:10.1017/S135561771100169X.

    PubMed Central  Article  PubMed  Google Scholar 

  6. CDC and the Alzheimer’s Association. (2007). The healthy brain initiative: a national public health road map to maintaining cognitive health. Chicago: Alzheimer’s Association.

    Google Scholar 

  7. Chen, P., Ratcliff, G., Belle, S. H., Cauley, J. A., DeKosky, S. T., & Ganguli, M. (2001). Patterns of cognitive decline in presymptomatic Alzheimer disease: a prospective community study. Arch Gen Psychiatry, 58(9), 853–858.

    CAS  Article  PubMed  Google Scholar 

  8. Chetelat, G., & Baron, J. C. (2003). Early diagnosis of Alzheimer's disease: contribution of structural neuroimaging. Neuroimage, 18(2), 525–541.

    Article  PubMed  Google Scholar 

  9. Chiang, G. C., Insel, P. S., Tosun, D., Schuff, N., Truran-Sacrey, D., Raptentsetsang, S., et al. (2011). Identifying cognitively healthy elderly individuals with subsequent memory decline by using automated MR temporoparietal volumes. Radiology, 259(3), 844–851. doi:10.1148/radiol.11101637.

    PubMed Central  Article  PubMed  Google Scholar 

  10. Cohen, J., Cohen, P., West, S. G., & Aiken, L. S. (2003). Applied multiple regression/correlation analysis fot the behavioral sciences (3rd ed.). New Jersey: Lawrence Erlbaum Associates.

    Google Scholar 

  11. Cracchiolo, J. R., Mori, T., Nazian, S. J., Tan, J., Potter, H., & Arendash, G. W. (2007). Enhanced cognitive activity–over and above social or physical activity–is required to protect Alzheimer’s mice against cognitive impairment, reduce Abeta deposition, and increase synaptic immunoreactivity. Neurobiol Learn Mem, 88(3), 277–294. doi:10.1016/j.nlm.2007.07.007.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  12. Crowe, M., Andel, R., Pedersen, N. L., Johansson, B., & Gatz, M. (2003). Does participation in leisure activities lead to reduced risk of Alzheimer’s disease? a prospective study of swedish twins. J Gerontol B Psychol Sci Soc Sci, 58(5), 249–255.

    Article  Google Scholar 

  13. Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. segmentation and surface reconstruction. Neuroimage, 9(2), 179–194. doi:10.1006/nimg.1998.0395.

    CAS  Article  PubMed  Google Scholar 

  14. Dickerson, B. C., Stoub, T. R., Shah, R. C., Sperling, R. A., Killiany, R. J., Albert, M. S., et al. (2011). Alzheimer-signature MRI biomarker predicts AD dementia in cognitively normal adults. Neurology, 76(16), 1395–1402. doi:10.1212/WNL.0b013e3182166e96.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  15. Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage, 9(2), 195–207. doi:10.1006/nimg.1998.0396.

    CAS  Article  PubMed  Google Scholar 

  16. Hall, C. B., Lipton, R. B., Sliwinski, M., Katz, M. J., Derby, C. A., & Verghese, J. (2009). Cognitive activities delay onset of memory decline in persons who develop dementia. Neurology, 73(5), 356–361. doi:10.1212/WNL.0b013e3181b04ae3.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  17. Jonaitis, E., La Rue, A., Mueller, K. D., Koscik, R. L., Hermann, B., & Sager, M. A. (2013). Cognitive activities and cognitive performance in middle-aged adults at risk for Alzheimer’s disease. Psychol Aging, 28(4), 1004–1014. doi:10.1037/a0034838.

    PubMed Central  Article  PubMed  Google Scholar 

  18. Koscik, R. L., La Rue, A., Jonaitis, E., Okonkwo, O. C., Johnson, S. C., Bendlin, B. B., et al. (2014). Emergence of mild cognitive impairment in late-middle-aged adults in the Wisconsin Registry for Alzheimer’s Prevention. Dementia and Geriatric Cognitive Disorders, in press.

  19. Landau, S. M., Marks, S. M., Mormino, E. C., Rabinovici, G. D., Oh, H., O’Neil, J. P., et al. (2012). Association of lifetime cognitive engagement and low beta-amyloid deposition. Arch Neurol, 69(5), 623–629. doi:10.1001/archneurol.2011.2748.

    PubMed Central  Article  PubMed  Google Scholar 

  20. Leung, G. T., Fung, A. W., Tam, C. W., Lui, V. W., Chiu, H. F., Chan, W. M., et al. (2010). Examining the association between participation in late-life leisure activities and cognitive function in community-dwelling elderly Chinese in Hong Kong. Int Psychogeriatr, 22(1), 2–13. doi:10.1017/S1041610209991025.

    Article  PubMed  Google Scholar 

  21. Mora, F. (2013). Successful brain aging: plasticity, environmental enrichment, and lifestyle. Dialogues Clin Neurosci, 15(1), 45–52.

    PubMed Central  PubMed  Google Scholar 

  22. Okonkwo, O. C., Xu, G., Dowling, N. M., Bendlin, B. B., Larue, A., Hermann, B. P., et al. (2012). Family history of Alzheimer disease predicts hippocampal atrophy in healthy middle-aged adults. Neurology, 78(22), 1769–1776. doi:10.1212/WNL.0b013e3182583047.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  23. Pillai, J. A., Hall, C. B., Dickson, D. W., Buschke, H., Lipton, R. B., & Verghese, J. (2011). Association of crossword puzzle participation with memory decline in persons who develop dementia. J Int Neuropsychol Soc, 17(6), 1006–1013. doi:10.1017/S1355617711001111.

    Article  PubMed  Google Scholar 

  24. Reinvang, I., Grambaite, R., & Espeseth, T. (2012). Executive dysfunction in MCI: subtype or early symptom. Int J Alzheimers Dis, 2012, 936272. doi:10.1155/2012/936272.

    PubMed Central  PubMed  Google Scholar 

  25. Reitan, R. M. (1958). Validity of the trail making test as an indicator of organic brain damage. Percept Mot Skills, 8, 271–276.

    Article  Google Scholar 

  26. Sager, M. A., Hermann, B., & La Rue, A. (2005). Middle-aged children of persons with Alzheimer’s disease: APOE genotypes and cognitive function in the Wisconsin Registry for Alzheimer’s prevention. J Geriatr Psychiatry Neurol, 18(4), 245–249. doi:10.1177/0891988705281882.

    Article  PubMed  Google Scholar 

  27. Schmidt, M. (1996). Rey auditory verbal learning test: a handbook. Torrance: Western Psychological Services.

    Google Scholar 

  28. Sperling, R. A., Jack, C. R., Jr., & Aisen, P. S. (2011). Testing the right target and right drug at the right stage. Sci Transl Med, 3(111), 111 cm133. doi: 10.1126/scitranslmed.3002609

  29. Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer’s disease. Lancet Neurol, 11(11), 1006–1012. doi:10.1016/S1474-4422(12)70191-6.

    PubMed Central  Article  PubMed  Google Scholar 

  30. Storandt, M., & Hill, R. D. (1989). Very mild senile dementia of the Alzheimer type. II. psychometric test performance. Arch Neurol, 46(4), 383–386.

    CAS  Article  PubMed  Google Scholar 

  31. Tabachnick, B. G., & Fidell, L. S. (2007). Using multivariate statistics (5th ed.). New York: Harper Collins.

    Google Scholar 

  32. Trenerry, M., Crosson, B., DeBoe, J., & Leber, L. (1989). Stroop neuropsychological screening test. Odessa: Psychological Assessment Resources, Inc.

    Google Scholar 

  33. Valenzuela, M. J., Sachdev, P., Wen, W., Chen, X., & Brodaty, H. (2008). Lifespan mental activity predicts diminished rate of hippocampal atrophy. PLoS One, 3(7), e2598. doi:10.1371/journal.pone.0002598.

    PubMed Central  Article  PubMed  Google Scholar 

  34. Vemuri, P., Lesnick, T. G., Przybelski, S. A., Knopman, D. S., Roberts, R. O., Lowe, V. J., et al. (2012). Effect of lifestyle activities on Alzheimer disease biomarkers and cognition. Ann Neurol, 72(5), 730–738. doi:10.1002/ana.23665.

    PubMed Central  Article  PubMed  Google Scholar 

  35. Verghese, J., Cuiling, W., Katz, M. J., Sanders, A., & Lipton, R. B. (2009). Leisure activities and risk of vascular cognitive impairment in older adults. J Geriatr Psychiatry Neurol, 22(2), 110–118. doi:10.1177/0891988709332938.

    PubMed Central  Article  PubMed  Google Scholar 

  36. Wechsler, D. (1997). WAIS-III: Wechsler adult intelligence scale - (3rd ed.). San Antonio: The Psychological Corporation.

    Google Scholar 

  37. Wilson, R. S., Mendes De Leon, C. F., Barnes, L. L., Schneider, J. A., Bienias, J. L., Evans, D. A., et al. (2002). Participation in cognitively stimulating activities and risk of incident Alzheimer disease. JAMA, 287(6), 742–748.

    Article  PubMed  Google Scholar 

  38. Wilson, R. S., Barnes, L. L., Aggarwal, N. T., Boyle, P. A., Hebert, L. E., Mendes de Leon, C. F., et al. (2010). Cognitive activity and the cognitive morbidity of Alzheimer disease. Neurology, 75(11), 990–996. doi:10.1212/WNL.0b013e3181f25b5e.

    PubMed Central  CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Caitlin A. Cleary, BSc, Sandra Harding, MS, Jennifer Bond, BA, and the WRAP psychometrists for assistance with study data collection. In addition, we gratefully acknowledge the support of researchers and staff at the Waisman Center, University of Wisconsin–Madison, where the brain scans took place. Finally, we thank participants in the Wisconsin Registry for Alzheimer’s Prevention for their continued dedication.

Funding

This work was supported by National Institute on Aging grants K23 AG045957 (OCO), R01 AG027161 (MAS), R01 AG021155 (SCJ), P50 AG033514 (SA), and P50 AG033514-S1 (OCO); by a Veterans Administration Merit Review Grant I01CX000165 (SCJ); and by a Clinical and Translational Science Award (UL1RR025011) to the University of Wisconsin, Madison. Portions of this research were supported by the Wisconsin Alumni Research Foundation, the Helen Bader Foundation, Northwestern Mutual Foundation, Extendicare Foundation, and from the Veterans Administration including facilities and resources at the Geriatric Research Education and Clinical Center of the William S. Middleton Memorial Veterans Hospital, Madison, WI.

Conflict of interest

The authors indicate no potential conflicts of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ozioma C. Okonkwo.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schultz, S.A., Larson, J., Oh, J. et al. Participation in cognitively-stimulating activities is associated with brain structure and cognitive function in preclinical Alzheimer’s disease. Brain Imaging and Behavior 9, 729–736 (2015). https://doi.org/10.1007/s11682-014-9329-5

Download citation

Keywords

  • Preclinical Alzheimer’s disease
  • Cognitive activity
  • Brain imaging
  • Cognition
  • AD prevention