Skip to main content

Advertisement

Log in

Cardiorespiratory fitness is associated with brain structure, cognition, and mood in a middle-aged cohort at risk for Alzheimer’s disease

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Cardiorespiratory fitness (CRF) is an objective measure of habitual physical activity (PA), and has been linked to increased brain structure and cognition. The gold standard method for measuring CRF is graded exercise testing (GXT), but GXT is not feasible in many settings. The objective of this study was to examine whether a non-exercise estimate of CRF is related to gray matter (GM) volumes, white matter hyperintensities (WMH), cognition, objective and subjective memory function, and mood in a middle-aged cohort at risk for Alzheimer’s disease (AD). Three hundred and fifteen cognitively healthy adults (mean age =58.58 years) enrolled in the Wisconsin Registry for Alzheimer’s Prevention underwent structural MRI scanning, cognitive testing, anthropometric assessment, venipuncture for laboratory tests, and completed a self-reported PA questionnaire. A subset (n = 85) underwent maximal GXT. CRF was estimated using a previously validated equation incorporating sex, age, body-mass index, resting heart rate, and self-reported PA. Results indicated that the CRF estimate was significantly associated with GXT-derived peak oxygen consumption, validating its use as a non-exercise CRF measure in our sample. Support for this finding was seen in significant associations between the CRF estimate and several cardiovascular risk factors. Higher CRF was associated with greater GM volumes in several AD-relevant brain regions including the hippocampus, amygdala, precuneus, supramarginal gyrus, and rostral middle frontal gyrus. Increased CRF was also associated with lower WMH and better cognitive performance in Verbal Learning & Memory, Speed & Flexibility, and Visuospatial Ability. Lastly, CRF was negatively correlated with self- and informant-reported memory complaints, and depressive symptoms. Together, these findings suggest that habitual participation in physical activity may provide protection for brain structure and cognitive function, thereby decreasing future risk for AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Amariglio, R. E., Becker, J. A., Carmasin, J., Wadsworth, L. P., Lorius, N., Sullivan, C., & Rentz, D. M. (2012). Subjective cognitive complaints and amyloid burden in cognitively normal older individuals. Neuropsychologia, 50(12), 2880–2886. doi:10.1016/j.neuropsychologia.2012.08.011.

    Article  PubMed Central  PubMed  Google Scholar 

  • American College of Sports Medicine. (2014). ACSM’s guidelines for exercise testing and prescription (9th ed.). Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health.

    Google Scholar 

  • Astrand, P. O., & Ryhming, I. (1954). A nomogram for calculation of aerobic capacity (physical fitness) from pulse rate during sub-maximal work. Journal of Applied Physiology, 7(2), 218–221.

    CAS  PubMed  Google Scholar 

  • Baker, L. D., Frank, L. L., Foster-Schubert, K., Green, P. S., Wilkinson, C. W., McTiernan, A., & Craft, S. (2010). Aerobic exercise improves cognition for older adults with glucose intolerance, a risk factor for Alzheimer’s disease. Journal of Alzheimer’s Disease, 22(2), 569–579. doi:10.3233/JAD-2010-100768.

    PubMed Central  CAS  PubMed  Google Scholar 

  • Balke, B., & Ware, R. W. (1959). An experimental study of physical fitness of Air Force personnel. United States Armed Forces Medical Journal, 10(6), 675–688.

    CAS  PubMed  Google Scholar 

  • Benton, A. L. (1994). Neuropsychological assessment. Annual Review of Psychology, 45, 1–23. doi:10.1146/annurev.ps.45.020194.000245.

    Article  CAS  PubMed  Google Scholar 

  • Birdsill, A. C., Koscik, R. L., Jonaitis, E. M., Johnson, S. C., Okonkwo, O. C., Hermann, B. P., & Bendlin, B. B. (2014). Regional white matter hyperintensities: aging, Alzheimer’s disease risk, and cognitive function. Neurobiology of Aging, 35(4), 769–776. doi:10.1016/j.neurobiolaging.2013.10.072.

    Article  PubMed  Google Scholar 

  • Brown, A. D., McMorris, C. A., Longman, R. S., Leigh, R., Hill, M. D., Friedenreich, C. M., & Poulin, M. J. (2010). Effects of cardiorespiratory fitness and cerebral blood flow on cognitive outcomes in older women. Neurobiology of Aging, 31(12), 2047–2057. doi:10.1016/j.neurobiolaging.2008.11.002.

    Article  PubMed  Google Scholar 

  • Burns, J. M., Cronk, B. B., Anderson, H. S., Donnelly, J. E., Thomas, G. P., Harsha, A., & Swerdlow, R. H. (2008). Cardiorespiratory fitness and brain atrophy in early Alzheimer disease. Neurology, 71(3), 210–216. doi:10.1212/01.wnl.0000317094.86209.cb.

    Article  PubMed Central  PubMed  Google Scholar 

  • Colcombe, S. J., Erickson, K. I., Raz, N., Webb, A. G., Cohen, N. J., McAuley, E., & Kramer, A. F. (2003). Aerobic fitness reduces brain tissue loss in aging humans. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 58(2), 176–180.

    Article  Google Scholar 

  • Colcombe, S. J., Kramer, A. F., Erickson, K. I., Scalf, P., McAuley, E., Cohen, N. J., & Elavsky, S. (2004). Cardiovascular fitness, cortical plasticity, and aging. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 3316–3321. doi:10.1073/pnas.0400266101.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Conn, V. S. (2010). Depressive symptom outcomes of physical activity interventions: meta-analysis findings. Annals of Behavioral Medicine, 39(2), 128–138. doi:10.1007/s12160-010-9172-x.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage, 9, 179–194. doi:10.1006/nimg.1998.0395.

    Article  CAS  PubMed  Google Scholar 

  • Debette, S., & Markus, H. S. (2010). The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ, 341, c3666. doi:10.1136/bmj.c3666.

    Article  PubMed Central  PubMed  Google Scholar 

  • Defina, L. F., Willis, B. L., Radford, N. B., Gao, A., Leonard, D., Haskell, W. L., & Berry, J. D. (2013). The association between midlife cardiorespiratory fitness levels and later-life dementia: a cohort study. Annals of Internal Medicine, 158(3), 162–168. doi:10.7326/0003-4819-158-3-201302050-00005.

    Article  PubMed Central  PubMed  Google Scholar 

  • Dowling, N. M., Hermann, B., La Rue, A., & Sager, M. A. (2010). Latent structure and factorial invariance of a neuropsychological test battery for the study of preclinical Alzheimer’s disease. Neuropsychology, 24(6), 742–756. doi:10.1037/a0020176.

    Article  PubMed Central  PubMed  Google Scholar 

  • Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. NeuroImage, 9, 195–207. doi:10.1006/nimg.1998.0396.

    Article  CAS  PubMed  Google Scholar 

  • Gordon, B. A., Rykhlevskaia, E. I., Brumback, C. R., Lee, Y., Elavsky, S., Konopack, J. F., & Fabiani, M. (2008). Neuroanatomical correlates of aging, cardiopulmonary fitness level, and education. Psychophysiology, 45(5), 825–838. doi:10.1111/j.1469-8986.2008.00676.x.

    PubMed  Google Scholar 

  • Honea, R. A., Thomas, G. P., Harsha, A., Anderson, H. S., Donnelly, J. E., Brooks, W. M., & Burns, J. M. (2009). Cardiorespiratory fitness and preserved medial temporal lobe volume in Alzheimer disease. Alzheimer Disease and Associated Disorders, 23(3), 188–197. doi:10.1097/WAD.0b013e31819cb8a2.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jackson, A. S., Blair, S. N., Mahar, M. T., Wier, L. T., Ross, R. M., & Stuteville, J. E. (1990). Prediction of functional aerobic capacity without exercise testing. Medicine and Science in Sports and Exercise, 22(6), 863–870.

    Article  CAS  PubMed  Google Scholar 

  • Jackson, A. S., Sui, X., O’Connor, D. P., Church, T. S., Lee, D. C., Artero, E. G., & Blair, S. N. (2012). Longitudinal cardiorespiratory fitness algorithms for clinical settings. American Journal of Preventive Medicine, 43(5), 512–519. doi:10.1016/j.amepre.2012.06.032.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jessen, F., Feyen, L., Freymann, K., Tepest, R., Maier, W., Heun, R., & Scheef, L. (2006). Volume reduction of the entorhinal cortex in subjective memory impairment. Neurobiology of Aging, 27(12), 1751–1756. doi:10.1016/j.neurobiolaging.2005.10.010.

    Article  PubMed  Google Scholar 

  • Johnson, N. F., Kim, C., Clasey, J. L., Bailey, A., & Gold, B. T. (2012). Cardiorespiratory fitness is positively correlated with cerebral white matter integrity in healthy seniors. NeuroImage, 59(2), 1514–1523. doi:10.1016/j.neuroimage.2011.08.032.

    Article  PubMed Central  PubMed  Google Scholar 

  • Jorm, A. F., & Jacomb, P. A. (1989). The informant questionnaire on cognitive decline in the elderly (IQCODE): socio-demographic correlates, reliability, validity and some norms. Psychological Medicine, 19(4), 1015–1022.

    Article  CAS  PubMed  Google Scholar 

  • Julious, S. A., & Mullee, M. A. (1994). Confounding and Simpson’s paradox. BMJ, 309(6967), 1480–1481.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jurca, R., Jackson, A. S., LaMonte, M. J., Morrow, J. R., Jr., Blair, S. N., Wareham, N. J., & Laukkanen, R. (2005). Assessing cardiorespiratory fitness without performing exercise testing. American Journal of Preventive Medicine, 29(3), 185–193. doi:10.1016/j.amepre.2005.06.004.

    Article  PubMed  Google Scholar 

  • Kaplan, E., Goodglass, H., & Weintraub, S. (1983). Boston naming test. Philadelphia: Lea & Febiger.

    Google Scholar 

  • Kline, G. M., Porcari, J. P., Hintermeister, R., Freedson, P. S., Ward, A., McCarron, R. F., & Rippe, J. M. (1987). Estimation of VO2max from a one-mile track walk, gender, age, and body weight. Medicine and Science in Sports and Exercise, 19(3), 253–259.

    Article  CAS  PubMed  Google Scholar 

  • Koscik, R. L., La Rue, A., Jonaitis, E. M., Okonkwo, O. C., Johnson, S. C., Bendlin, B. B., & Sager, M. A. (2014). Emergence of mild cognitive impairment in late middle-aged adults in the Wisconsin registry for Alzheimer’s prevention. Dementia and Geriatric Cognitive Disorders, 38(1–2), 16–30. doi:10.1159/000355682.

    Article  PubMed Central  PubMed  Google Scholar 

  • Lakoski, S. G., Barlow, C. E., Farrell, S. W., Berry, J. D., Morrow, J. R., Jr., & Haskell, W. L. (2011). Impact of body mass index, physical activity, and other clinical factors on cardiorespiratory fitness (from the cooper center longitudinal study). American Journal of Cardiology, 108(1), 34–39. doi:10.1016/j.amjcard.2011.02.338.

    Article  PubMed  Google Scholar 

  • Liu, R., Sui, X., Laditka, J. N., Church, T. S., Colabianchi, N., Hussey, J., & Blair, S. N. (2012). Cardiorespiratory fitness as a predictor of dementia mortality in men and women. Medicine and Science in Sports and Exercise, 44(2), 253–259. doi:10.1249/MSS.0b013e31822cf717.

    Article  PubMed Central  PubMed  Google Scholar 

  • Mailey, E. L., White, S. M., Wojcicki, T. R., Szabo, A. N., Kramer, A. F., & McAuley, E. (2010). Construct validation of a non-exercise measure of cardiorespiratory fitness in older adults. BMC Public Health, 10, 59. doi:10.1186/1471-2458-10-59.

    Article  PubMed Central  PubMed  Google Scholar 

  • McAuley, E., Szabo, A. N., Mailey, E. L., Erickson, K. I., Voss, M., White, S. M., & Kramer, A. F. (2011). Non-exercise estimated cardiorespiratory fitness: associations with brain structure, cognition, and memory complaints in older adults. Mental Health Physical Activity, 4(1), 5–11. doi:10.1016/j.mhpa.2011.01.001.

    Article  PubMed Central  PubMed  Google Scholar 

  • McTiernan, A., Kooperberg, C., White, E., Wilcox, S., Coates, R., Adams-Campbell, L. L., & Women’s Health Initiative Cohort, S. (2003). Recreational physical activity and the risk of breast cancer in postmenopausal women: the Women’s Health Initiative Cohort Study. JAMA, 290(10), 1331–1336. doi:10.1001/jama.290.10.1331.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, M. E., Rejeski, W. J., Blair, S. N., Duncan, P. W., Judge, J. O., King, A. C., & Castaneda-Sceppa, C. (2007). Physical activity and public health in older adults: recommendation from the American College of Sports Medicine and the American Heart Association. Medicine and Science in Sports and Exercise, 39(8), 1435–1445. doi:10.1249/mss.0b013e3180616aa2.

    Article  PubMed  Google Scholar 

  • Nes, B. M., Janszky, I., Vatten, L. J., Nilsen, T. I., Aspenes, S. T., & Wisloff, U. (2011). Estimating V.O 2peak from a nonexercise prediction model: the HUNT Study, Norway. Medicine and Science in Sports and Exercise, 43(11), 2024–2030. doi:10.1249/MSS.0b013e31821d3f6f.

    Article  PubMed  Google Scholar 

  • Newson, R. S., & Kemps, E. B. (2006). Cardiorespiratory fitness as a predictor of successful cognitive ageing. Journal of Clinical and Experimental Neuropsychology, 28(6), 949–967. doi:10.1080/13803390591004356.

    Article  PubMed  Google Scholar 

  • Prakash, R. S., Voss, M. W., Erickson, K. I., Lewis, J. M., Chaddock, L., Malkowski, E., & Kramer, A. F. (2011). Cardiorespiratory fitness and attentional control in the aging brain. Frontiers in Human Neuroscience, 4, 229. doi:10.3389/fnhum.2010.00229.

    Article  PubMed Central  PubMed  Google Scholar 

  • Radloff, L. S. (1977). The CES-D scale: a self-report depression scale for research in the general population. Applied Psychological Measurement, 1, 385–401.

    Article  Google Scholar 

  • Reitan, R., & Wolfson, D. (1993). The halstead-reitan neuropsychological test battery: Theory and clinical interpretation. Tucson: Neuropsychology Press.

    Google Scholar 

  • Sager, M. A., Hermann, B., & La Rue, A. (2005). Middle-aged children of persons with Alzheimer’s disease: APOE genotypes and cognitive function in the Wisconsin registry for Alzheimer’s prevention. Journal of Geriatric Psychiatry and Neurology, 18(4), 245–249. doi:10.1177/0891988705281882.

    Article  PubMed  Google Scholar 

  • Schmidt, M. (1996). Rey auditory verbal learning test: A handbook. Torrance, CA: Western Psychological Services.

    Google Scholar 

  • Schmidt, P., Gaser, C., Arsic, M., Buck, D., Forschler, A., Berthele, A., & Muhlau, M. (2012). An automated tool for detection of FLAIR-hyperintense white-matter lesions in Multiple Sclerosis. NeuroImage, 59(4), 3774–3783. doi:10.1016/j.neuroimage.2011.11.032.

    Article  PubMed  Google Scholar 

  • Simpson, E. H. (1951). The interpretation of interaction in contingency tables. Journal of the Royal Statistical Society: Series B Methodological, 13, 238–241.

    Google Scholar 

  • Trenerry, M., Crosson, B., DeBoe, J., & Leber, L. (1989). Stroop neuropsychological screening test. Odessa: Psychological Assessment Resources, Inc.

    Google Scholar 

  • Tseng, B. Y., Gundapuneedi, T., Khan, M. A., Diaz-Arrastia, R., Levine, B. D., Lu, H., & Zhang, R. (2013). White matter integrity in physically fit older adults. NeuroImage, 82, 510–516. doi:10.1016/j.neuroimage.2013.06.011.

    Article  CAS  PubMed  Google Scholar 

  • Tu, Y. K., Gunnell, D., & Gilthorpe, M. S. (2008). Simpson’s paradox, Lord’s paradox, and suppression effects are the same phenomenon–the reversal paradox. Emerging Themes Epidemiology, 5, 2. doi:10.1186/1742-7622-5-2.

    Article  Google Scholar 

  • U.S. Department of Health & Human Services (1998). Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults: The Evidence Report. Available at http://www.nhlbi.nih.gov/guidelines/obesity/ob_gdlns.htm: Accessed May 22, 2014.

  • U.S. Department of Health & Human Services (2008). 2008 Physical Activity Guidelines for Americans. Available at http://www.health.gov/paguidelines/guidelines/default.aspx: Accessed February 21, 2014.

  • Vidoni, E. D., Honea, R. A., Billinger, S. A., Swerdlow, R. H., & Burns, J. M. (2012). Cardiorespiratory fitness is associated with atrophy in Alzheimer’s and aging over 2 years. Neurobiology of Aging, 33(8), 1624–1632. doi:10.1016/j.neurobiolaging.2011.03.016.

    Article  PubMed Central  PubMed  Google Scholar 

  • Wechsler, D. (1997). WAIS-III: Wechsler adult intelligence scale - (3rd ed.). San Antonio: The Psychological Corporation.

    Google Scholar 

  • Wechsler, D. (1999). Wechsler abbreviated scale of intelligence. San Antonio: The Psychological Corporation.

    Google Scholar 

  • Wilkinson, G. (1993). Wide range achievement test administration manual (3rd ed.). Wilmington: Wide Range Incorporated.

    Google Scholar 

Download references

Acknowledgements

This work was supported by National Institute on Aging grants K23 AG045957 (OCO), R01 AG027161 (MAS), R01 AG021155 (SCJ), P50 AG033514 (SA), and P50 AG033514-S1 (OCO); by a Veterans Administration Merit Review Grant I01CX000165 (SCJ); and by a Clinical and Translational Science Award (UL1RR025011) to the University of Wisconsin, Madison. Portions of this research were supported by the Wisconsin Alumni Research Foundation, the Helen Bader Foundation, Northwestern Mutual Foundation, Extendicare Foundation, and from the Veterans Administration including facilities and resources at the Geriatric Research Education and Clinical Center of the William S. Middleton Memorial Veterans Hospital, Madison, WI.

Special thanks to James H. Stein, MD, Claudia Korcarz, DVM RDCS, Jean Einerson, MS, Jessica Horn, BS CEP, and the rest of the Artherosclerosis Imaging Research Program for facilitating graded exercise tests; Caitlin A. Cleary, BS, Sandra Harding, MS, Jennifer Bond, BA, Janet Rowley, BA, and the WRAP psychometrists for helping with study data collection; researchers and staff at the Waisman Center, University of Wisconsin–Madison, where the brain scans took place; and participants in the Wisconsin Registry for Alzheimer’s Prevention for their continued dedication.

Disclosures

Elizabeth A. Boots, Stephanie A. Schultz, Jennifer M. Oh, Jordan Larson, Dorothy Edwards, Dane Cook, Rebecca L. Koscik, Maritza N. Dowling, Catherine L. Gallagher, Cynthia M. Carlsson, Howard A. Rowley, Barbara B. Bendlin, Asenath LaRue, Sanjay Asthana, Bruce P. Hermann, Mark A. Sager, Sterling C. Johnson, and Ozioma C. Okonkwo declare no conflicts of interest.

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all patients for being included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozioma C. Okonkwo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boots, E.A., Schultz, S.A., Oh, J.M. et al. Cardiorespiratory fitness is associated with brain structure, cognition, and mood in a middle-aged cohort at risk for Alzheimer’s disease. Brain Imaging and Behavior 9, 639–649 (2015). https://doi.org/10.1007/s11682-014-9325-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-014-9325-9

Keywords

Navigation