Abstract
In recent years, functional connectomics signatures have been shown to be a very valuable tool in characterizing and differentiating brain disorders from normal controls. However, if the functional connectivity alterations in a brain disease are localized within sub-networks of a connectome, then accurate identification of such disease-specific sub-networks is critical and this capability entails both fine-granularity definition of connectome nodes and effective clustering of connectome nodes into disease-specific and non-disease-specific sub-networks. In this work, we adopted the recently developed DICCCOL (dense individualized and common connectivity-based cortical landmarks) system as a fine-granularity high-resolution connectome construction method to deal with the first issue, and employed an effective variant of non-negative matrix factorization (NMF) method to pinpoint disease-specific sub-networks, which we called atomic connectomics signatures in this work. We have implemented and applied this novel framework to two mild cognitive impairment (MCI) datasets from two different research centers, and our experimental results demonstrated that the derived atomic connectomics signatures can effectively characterize and differentiate MCI patients from their normal controls. In general, our work contributed a novel computational framework for deriving descriptive and distinctive atomic connectomics signatures in brain disorders.
Similar content being viewed by others
References
Aharon, M., Elad, M., & Bruckstein, A. (2006). K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. Signal Processing, IEEE Transactions on, 54(11), 4311–4322.
Arbabshirani, M. R., Kiehl, K. A., Pearlson, G. D., & Calhoun, V. D. (2013). Classification of schizophrenia patients based on resting-state functional network connectivity. Frontiers in Neuroscience, 7. doi:10.3389/fnins.2013.00133.
Bassett, D. S., & Bullmore, E. (2006). Small-world brain networks. The Neuroscientist, 12(6), 512–523.
Broyd, S. J., Demanuele, C., Debener, S., Helps, S. K., James, C. J., & Sonuga-Barke, E. J. S. (2009). Default-mode brain dysfunction in mental disorders: a systematic review. Neuroscience & Biobehavioral Reviews, 33(3), 279–296.
Brunet, J.-P., Tamayo, P., Golub, T. R., & Mesirov, J. P. (2004). Metagenes and molecular pattern discovery using matrix factorization. Proceedings of the National Academy of Sciences, 101(12), 4164–4169.
Camchong, J., MacDonald, A. W., 3rd, Bell, C., Mueller, B. A., & Lim, K. O. (2011). Altered functional and anatomical connectivity in schizophrenia. Schizophrenia Bulletin, 37(3), 640–650.
Cocchi, L., Bramati, I. E., Zalesky, A., Furukawa, E., Fontenelle, L. F., Moll, J., et al. (2012). Altered functional brain connectivity in a non-clinical sample of young adults with attention-deficit/hyperactivity disorder. The Journal of Neuroscience, 32(49), 17753–17761.
Cox, D., & Pinto, N. (2011). Beyond simple features: A large-scale feature search approach to unconstrained face recognition. Automatic Face & Gesture Recognition and Workshops (FG 2011), 2011 I.E. International Conference on, (pp. 8–15).
Derrfuss, J., & Mar, R. A. (2009). Lost in localization: the need for a universal coordinate database. NeuroImage, 48(1), 1–7.
Faraco, C. C., Puente, A. N., Brown, C., Terry, D. P., & Stephen Miller, L. (2013). Lateral temporal hyper-activation as a novel biomarker of mild cognitive impairment. Neuropsychologia, 51(11), 2281–2293.
Fornito, A., & Bullmore, E. T. (2014). Connectomics: a new paradigm for understanding brain disease. European Neuropsychopharmacology. doi:10.1016/j.euroneuro.2014.02.011.
Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews. Neuroscience, 8(9), 700–711.
Fransson, P. (2005). Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Human Brain Mapping, 26(1), 15–29.
Gilboa, A., Shalev, A. Y., Laor, L., Lester, H., Louzoun, Y., Chisin, R., et al. (2004). Functional connectivity of the prefrontal cortex and the amygdala in posttraumatic stress disorder. Biological Psychiatry, 55(3), 263–272.
Greicius, M. D., Srivastava, G., Reiss, A. L., & Menon, V. (2004). Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: Evidence from functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 101(13), 4637–4642.
Hughes, C. P., Berg, L., Danziger, W. L., Coben, L. A., & Martin, R. L. (1982). A new clinical scale for the staging of dementia. The British Journal of Psychiatry, 140(6), 566–572.
Hutchins, L. N., Murphy, S. M., Singh, P., & Graber, J. H. (2008). Position-dependent motif characterization using non-negative matrix factorization. Bioinformatics, 24(23), 2684–2690.
Kennedy, D. (2010). Making connections in the connectome era. Neuroinformatics, 8(2), 61–62.
Kuncheva, L. I., & Vetrov, D. P. (2006). Evaluation of stability of k-Means cluster ensembles with respect to random initialization. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 28(11), 1798–1808.
Lancichinetti, A., & Fortunato, S. (2012). Consensus clustering in complex networks. Scientific Reports, 2. doi:10.1038/srep00336.
Lanius, R. A., Williamson, P. C., Bluhm, R. L., Densmore, M., Boksman, K., Neufeld, R. W. J., et al. (2005). Functional connectivity of dissociative responses in posttraumatic stress disorder: a functional magnetic resonance imaging investigation. Biological Psychiatry, 57(8), 873–884.
Lee, D. D., & Seung, H. S. (1999). Learning the parts of objects by non-negative matrix factorization. Nature, 401(6755), 788–791.
Li, K., Guo, L., Zhu, D., Hu, X., Han, J., & Liu, T. (2012). Individual functional ROI optimization via maximization of group-wise consistency of structural and functional profiles. Neuroinformatics, 10(3), 225–242.
Li, K., Zhu, D., Guo, L., Li, Z., Lynch, M. E., Coles, C., et al. (2013). Connectomics signatures of prenatal cocaine exposure affected adolescent brains. Human Brain Mapping, 34(10), 2494–2510.
Li, X., Zhu, D., Jiang, X., Jin, C., Zhang, X., Guo, L., et al. (2014). Dynamic functional connectomics signatures for characterization and differentiation of PTSD patients. Human Brain Mapping, 35(4), 1761–1778.
Liu, T. (2011). A few thoughts on brain ROIs. Brain Imaging and Behavior, 5(3), 189–202.
Liu, T., Shen, D., & Davatzikos, C. (2004). Deformable registration of cortical structures via hybrid volumetric and surface warping. NeuroImage, 22(4), 1790–1801.
Mirkin, B. (1998). Mathematical classification and clustering: From how to what and why. Classification, data analysis, and data highways (pp. 172–181). Berlin: Springer.
Ou, J., Lian, Z., Xie, L., Li, X., Wang, P., Hao, Y., et al. (2014). Atomic dynamic functional interaction patterns for characterization of ADHD. Human Brain Mapping, 35(10), 5262–5278.
Passingham, R. E., Stephan, K. E., & Kotter, R. (2002). The anatomical basis of functional localization in the cortex. Nature Reviews. Neuroscience, 3(8), 606–616.
Pati, Y. C., Rezaiifar, R., & Krishnaprasad, P. S. (1993). Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. Signals, Systems, and Computers, Proceedings of the 27 th Annual Asilomar Conference on, (pp. 40–44).
Poldrack, R. A. (2012). The future of fMRI in cognitive neuroscience. NeuroImage, 62(2), 1216–1220.
Puente, A. N., Faraco, C., Terry, D. P., Brown, C., & Miller, L. S. (2014). Minimal functional brain differences between older adults with and without mild cognitive impairment during the stroop. Aging, Neuropsychology, and Cognition, 21(3), 346–369.
Qiang, Z., & Baoxin, L. (2010). Discriminative K-SVD for dictionary learning in face recognition. Computer Vision and Pattern Recognition (CVPR), 2010 I.E. Conference on, (pp. 2691–2698).
Rubinstein, R., Zibulevsky, M., & Elad, M. (2008). Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit. CS Technion. doi:10.1.1.182.9978.
Santhanam, P., Coles, C. D., Li, Z., Li, L., Lynch, M. E., & Hu, X. (2011). Default mode network dysfunction in adults with prenatal alcohol exposure. Psychiatry Research: Neuroimaging, 194(3), 354–362.
Saxe, A., Koh, P. W., Chen, Z., Bhand, M., Suresh, B., & Ng, A. Y. (2011). On random weights and unsupervised feature learning. Proceedings of the 28th International Conference on Machine Learning (ICML-11), (pp. 1089–1096).
Sporns, O. (2011). The human connectome: a complex network. Annals of the New York Academy of Sciences, 1224(1), 109–125.
Sporns, O. (2013). Network attributes for segregation and integration in the human brain. Current Opinion in Neurobiology, 23(2), 162–171.
Sporns, O., Chialvo, D. R., Kaiser, M., & Hilgetag, C. C. (2004). Organization, development and function of complex brain networks. Trends in Cognitive Sciences, 8(9), 418–425.
Stam, C. J. (2010). Characterization of anatomical and functional connectivity in the brain: a complex networks perspective. International Journal of Psychophysiology, 77(3), 186–194.
Supekar, K., Menon, V., Rubin, D., Musen, M., & Greicius, M. D. (2008). Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Computational Biology, 4(6), e1000100.
Trefethen, L. N., & Bau III, D. (1997). Numerical linear algebra (Vol. 50): Siam.
Venkataraman, A., Whitford, T. J., Westin, C. F., Golland, P., & Kubicki, M. (2012). Whole brain resting state functional connectivity abnormalities in schizophrenia. Schizophrenia Research, 139(1–3), 7–12.
Wang, K., Liang, M., Wang, L., Tian, L., Zhang, X., Li, K., et al. (2007). Altered functional connectivity in early Alzheimer’s disease: a resting-state fMRI study. Human Brain Mapping, 28(10), 967–978.
Wee, C.-Y., Yap, P.-T., Zhang, D., Denny, K., Browndyke, J. N., Potter, G. G., et al. (2012). Identification of MCI individuals using structural and functional connectivity networks. NeuroImage, 59(3), 2045–2056.
Wright, J., Yang, A. Y., Ganesh, A., Sastry, S. S., & Yi, M. (2009). Robust face recognition via sparse representation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 31(2), 210–227.
Yang, Z., & Oja, E. (2010). Linear and nonlinear projective nonnegative matrix factorization. Neural Networks, IEEE Transactions on, 21(5), 734–749.
Yang, Z., Yuan, Z., & Laaksonen, J. (2007). Projective non-negative matrix factorization with applications to facial image processing. International Journal of Pattern Recognition and Artificial Intelligence, 21(08), 1353–1362.
Yuan, Y., Jiang, X., Zhu, D., Chen, H., Li, K., Lv, P., et al. (2013). Meta-analysis of functional roles of DICCCOLs. Neuroinformatics, 11(1), 47–63.
Zhang, Y., Han, J., Hu, X., Guo, L., & Liu, T. (2013). Data-driven evaluation of functional connectivity metrics. Biomedical Imaging (ISBI), 2013 I.E. 10th International Symposium on, (pp. 532–535).
Zhu, D., Li, K., Faraco, C. C., Deng, F., Zhang, D., Guo, L., et al. (2012). Optimization of functional brain ROIs via maximization of consistency of structural connectivity profiles. NeuroImage, 59(2), 1382–1393.
Zhu, D., Li, K., Guo, L., Jiang, X., Zhang, T., Zhang, D., et al. (2013). DICCCOL: dense individualized and common connectivity-based cortical landmarks. Cerebral Cortex, 23(4), 786–800.
Zhu, D., Li, K., Terry, D. P., Puente, A. N., Wang, L., Shen, D., et al. (2014). Connectome-scale assessments of structural and functional connectivity in MCI. Human Brain Mapping, 35(7), 2911–2923.
Acknowledgments
T Liu was supported by NIH R01 DA-033393, NIH R01 AG-042599, NSF CAREER Award IIS-1149260, NSF CBET-1302089 and NSF BCS-1439051. J Zhang was supported by start-up funding and Sesseel Award from Yale University. The authors would like to thank the anonymous reviewers for their constructive comments.
Conflict of Interest
Jinli Ou, Li Xie, Xiang Li, Dajiang Zhu, Douglas P. Terry, A. Nicholas Puente, Rongxin Jiang, Yaowu Chen, Lihong Wang, Dinggang Shen, Jing Zhang, L. Stephen Miller, and Tianming Liu declare that they have no conflicts of interest.
Informed Consent
All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all patients for being included in the study.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ou, J., Xie, L., Li, X. et al. Atomic connectomics signatures for characterization and differentiation of mild cognitive impairment. Brain Imaging and Behavior 9, 663–677 (2015). https://doi.org/10.1007/s11682-014-9320-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11682-014-9320-1