Skip to main content

Reliability of negative BOLD in ipsilateral sensorimotor areas during unimanual task activity

Abstract

Research using functional magnetic resonance imaging has for numerous years now reported the existence of a negative blood oxygenation level dependent (BOLD) response. Based on accumulating evidence, this negative BOLD signal appears to represent an active inhibition of cortical areas in which it is found during task activity. This particularly important with respect to motor function given that it is fairly well-established that, in younger adults, the ipsilateral sensorimotor cortex exhibits negative BOLD during unimanual movements in fMRI. This interhemispheric suppression of cortical activity may have useful implications for our understanding of both basic motor function and rehabilitation of injury or disease. However, to date, we are aware of no study that has tested the reliability of evoked negative BOLD in ipsilateral sensorimotor cortex in individuals across sessions. The current study employs a unimanual finger opposition task previously shown to evoke negative BOLD in ipsilateral sensorimotor cortex across three sessions. Reliability metrics across sessions indicates that both the magnitude and location of ipsilateral sensorimotor negative BOLD response is relatively stable over each of the three sessions. Moreover, the volume of negative BOLD in ipsilateral cortex was highly correlated with volume of positive BOLD activity in the contralateral primary motor cortex. These findings show that the negative BOLD signal can be reliably evoked in unimanual task paradigms, and that the signal dynamic could represent an active suppression of the ipsilateral sensorimotor cortex originating from the contralateral motor areas.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Addamo, P. K., Farrow, M., Hoy, K. E., Bradshaw, J. L., & Georgiou-Karistianis, N. (2007). The effects of age and attention on motor overflow production—a review. Brain Research Reviews, 54(1), 189–204.

    Article  PubMed  Google Scholar 

  • Allison, J. D., Meador, K. J., Loring, D. W., Figueroa, R. E., & Wright, J. C. (2000). Functional MRI cerebral activation and deactivation during finger movement. Neurology, 54, 135–142.

    Article  CAS  PubMed  Google Scholar 

  • Altman, D. G., & Bland, J. M. (1983). Measurement in medicine: the analysis of method comparison studies. The Statistician, 32, 307–317.

    Article  Google Scholar 

  • Berlucchi, G. (1990). Commisurotomy studies in animals. In F. Boller & J. Grafman (Eds.), Handbook of neurophysiology. Vol. 4 (pp. 9–47). Amsterdam: Elsevier.

    Google Scholar 

  • Birn, R. M., Diamond, J. B., Smith, M. A., & Bandettini, P. A. (2006). Separating respiratory-variation-related fluctuations from neuronal-activity-related fluctuations in fMRI. NeuroImage, 31(4), 1536–1548.

    Article  PubMed  Google Scholar 

  • Boorman, L., et al. (2010). Negative blood oxygen level dependence in the rat: a model for investigating the role of suppression in neurovascular coupling. Journal of Neuroscience, 30(12), 4285–4294.

    Article  CAS  PubMed  Google Scholar 

  • Bright, M. G., Bianciardi, M., de Zwart, J. A., Murphy, K., Duyn, J. H., (2014) Early anti-correlated BOLD signal changes of physiologic origin. Neuroimage, 15(87), 287–96.

  • Davidson, T., & Tremblay, F. (2013). Age and hemispheric differences in transcallosal inhibition between motor cortices: an ispsilateral silent period study. BMC Neuroscience, 14, 62.

    Article  PubMed Central  PubMed  Google Scholar 

  • Devor, A., et al. (2007). Suppressed neuronal activity and concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-dependent signal. Journal of Neuroscience, 27(16), 4452–4459.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Diedrichsen, J., Wiestler, T., & Krakauer, J. W. (2013). Two distinct ipsilateral cortical representations for individuated finger movements. Cerebral Cortex, 23(6), 1362–1377.

    Article  PubMed Central  PubMed  Google Scholar 

  • Diekhoff, S., Uludağ, K., Sparing, R., Tittgemeyer, M., Cavuşoğlu, M., von Cramon, D, Y., et al. (2011) Functional localization in the human brain: Gradient-Echo, Spin-Echo, and arterial spin-labeling fMRI compared with neuronavigated TMS. Hum Brain Mapp, 32(3), 341–57.

  • Ferbert, A., Priori, A., Rothwell, J. C., Day, B. L., Colebatch, J. G., & Marsden, C. D. (1992). Interhemispheric inhibition of the human motor cortex. Journal of Physiology, 453(1), 525–546.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fesl, G., Braun, B., Rau, S., Wiesmann, M., Ruge, M., Bruhns, P., et al. (2008). Is the center of mass (COM) a reliable parameter for the localization of brain function in fMRI? Eur Radiol, 18(5), 1031–7.

  • Genovese, C. R., Lazar, N. A., & Nichols, T. (2002). Thresholding of statistical maps in functional neuroimaging using the false discovery rate. NeuroImage, 15, 870–878.

    Article  PubMed  Google Scholar 

  • Goense, J., Merkle, H., & Logothetis, N. K. (2012). High-resolution fMRI reveals laminar differences in neurovascular coupling between positive and negative BOLD responses. Neuron, 76(3), 629–639.

    Article  CAS  PubMed  Google Scholar 

  • Hayes, D. J., & Huxtable, A. G. (2012). Interpreting deactivations in neuroimaging. Frontiers in Psychology, 3, 27.

    Article  PubMed Central  PubMed  Google Scholar 

  • Hlushchuk, Y., & Hari, R. (2006). Transient suppression of ipsilateral primary somatosensory cortex during tactile finger stimulation. Journal of Neuroscience, 26, 5819–5824.

    Article  CAS  PubMed  Google Scholar 

  • Hoy, K. E., Fitzgerald, P. B., Bradshaw, J. L., Armatas, C. A., & Georgiou-Karistianis, N. (2004). Investigating the cortical origins of motor overflow. Brain Research Reviews, 46(3), 315–327.

    Article  PubMed  Google Scholar 

  • Jaccard, P. (1901). Étude comparative de la distribution florale dans une portion des Alpes et des Jura. Bulletin de la Société Vaudoise des Sciences Naturelles, 37, 547–579.

  • Jancke, L., Shah, N. J., & Peters, M. (2000). Cortical activations in primary and secondary motor areas for complex bimanual movements in professional pianists. Brain Research. Cognitive Brain Research, 10, 177–183.

    Article  CAS  PubMed  Google Scholar 

  • Kastrup, A., Baudewig, J., Schnaudigel, S., Huonker, R., Becker, L., Sohns, J. M., et al. (2008). Behavioral correlates of negative BOLD signal changes in the primary somatosensory cortex. NeuroImage, 41, 1364–1371.

    Article  PubMed  Google Scholar 

  • Klingner, C. M., Hasler, C., Brodoehl, S., & Witte, O. W. (2010). Dependence of the negative BOLD response on somatosensory stimulus intensity. NeuroImage, 53, 189–195.

    Article  PubMed  Google Scholar 

  • Klingner, C. M., Huonker, R., Flemming, S., Hasler, C., Brodoehl, S., Preul, C., et al. (2011). Functional deactivations: multiple ipsilateral brain areas engaged in the processing of somatosensory information. Human Brain Mapping, 32, 127–140.

    Article  PubMed  Google Scholar 

  • Kobayashi, M., Hutchinson, S., Schlaug, G., Pascual-Leone, A. (2003). Ipsilateral motor cortex activation on functional magnetic resonance imaging during unilateral hand movements is related to interhemispheric interactions. Neuroimage, 20(4), 2259–2270.

  • Krampe, R. T., Engbert, R., & Kliegl, R. (2002). The effects of expertise and age on rhythm production: adaptations to timing and sequencing constraints. Brain and Cognition, 48, 179–194.

    Article  PubMed  Google Scholar 

  • Lenzi, D., Conte, A., Mainero, C., Frasca, V., Fubelli, F., Totaro, P., et al. (2007). Effect of corpus callosum damage on ipsilateral motor activation in patients with multiple sclerosis: a functional and anatomical study. Human Brain Mapping, 28, 636–644.

    Article  PubMed  Google Scholar 

  • Maitra, R. (2009). A re-defined and generalized percent-overlap-of-activation measure for studies of fMRI reproducibility and its use in identifying outlier activation maps. NeuroImage, 50(1), 124–135. doi:10.1016/j.neuroimage.2009.11.070.

    Article  PubMed  Google Scholar 

  • Malcolm, M. P., Triggs, W. J., Light, K. E., Shechtman, O., Khandekar, G., & Gonzalez Rothi, L. J. (2006). Reliability of motor cortex transcranial magnetic stimulation in four muscle representations. Clinical Neurophysiology, 117, 1037–1046.

    Article  CAS  PubMed  Google Scholar 

  • Manson, S. C., Palace, J., Frank, J. A., & Matthews, P. M. (2006). Loss of interhemispheric inhibition in patients with multiple sclerosis is related to corpus callosum atrophy. Experimental Brain Research, 174, 728–733.

    Article  PubMed  Google Scholar 

  • Manson, S. C., Wegner, C., Filippi, M., Barkhof, F., Beckmann, C., Ciccarelli, O., et al. (2008). Impairment of movement-associated brain deactivation in multiple sclerosis: further evidence for a functional pathology of interhemispheric neuronal inhibition. Experimental Brain Research, 187, 25–31.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mayston, M. J., Harrison, L. M., Quinton, R., Stephens, J. A., Krams, M., Bouloux, P. M. (1997). Mirror movements in X-linked Kallmann’s syndrome. I. A neurophysiological study. Brain, 120(Pt 7), 1199–1216.

  • Mayston, M. J., Harrison, L. M., & Stephens, J. A. (1999). A neurophysiological study of mirror movements in adults and children. Annals of Neurology, 45(5), 583–594.

    Article  CAS  PubMed  Google Scholar 

  • McGraw, K. O., & Wong, S. P. (1996). Forming inferences about some intraclass correlation coefficients. Psychological Methods, 1(1), 30.

    Article  Google Scholar 

  • McGregor, K., Craggs, J., Benjamin, M., Crosson, B., & White, K. (2009). Age-related changes in motor control during unimanual movements. Brain Imaging and Behavior, 3, 317–331.

    Article  Google Scholar 

  • McGregor, K. M., Zlatar, Z., Kleim, E., Sudhyadhom, A., Bauer, A., Phan, S., et al. (2011). Physical activity and neural correlates of aging: a combined TMS/fMRI study. Behavioural Brain Research, 222, 158–168.

    Article  PubMed Central  PubMed  Google Scholar 

  • McGregor, K., Heilman, K., Nocera, J., Patten, C., Manini, T., Crosson, B., et al. (2012a). Aging, aerobic activity and interhemispheric communication. Brain Sciences, 2, 634–648.

    Article  PubMed Central  PubMed  Google Scholar 

  • McGregor, K. M., Carpenter, H., Kleim, E., Sudhyadhom, A., White, K. D., Butler, A. J., et al. (2012b). Motor map reliability and aging: a TMS/fMRI study. Experimental Brain Research, 219, 97–106.

    Article  PubMed  Google Scholar 

  • McGregor, K. M., Nocera, J. R., Sudhyadhom, A., Patten, C., Manini, T. M., Kleim, J. A., et al. (2013). Effects of aerobic fitness on aging-related changes of interhemispheric inhibition and motor performance. Frontiers in Aging Neuroscience, 5, 66.

    Article  PubMed Central  PubMed  Google Scholar 

  • Meyer, B. U., Roricht, S., & Woiciechowsky, C. (1998). Topography of fibers in the human corpus callosum mediating interhemispheric inhibition between the motor cortices. Annals of Neurology, 43, 360–369.

    Article  CAS  PubMed  Google Scholar 

  • Newton, J. M., Sunderland, A., & Gowland, P. A. (2005). fMRI signal decreases in ipsilateral primary motor cortex during unilateral hand movements are related to duration and side of movement. NeuroImage, 24, 1080–1087.

    Article  PubMed  Google Scholar 

  • Northoff, G., Walter, M., Schulte, R. F., Beck, J., Dydak, U., Henning, A., … & Boesiger, P. (2007). GABA concentrations in the human anterior cingulate cortex predict negative BOLD responses in fMRI. Nature Neuroscience, 10(12), 1515–1517.

  • Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh Inventory. Neuropsychologia, 9, 97–113.

    Article  CAS  PubMed  Google Scholar 

  • Ottaviani, D., Tiple, D., Suppa, A., Colosimo, C., Fabbrini, G., Cincotta, M., et al. (2008). Mirror movements in patients with Parkinson’s disease. Movement Disorders, 23(2), 253–258.

    Article  PubMed  Google Scholar 

  • Portney, L. G., & Watkins, M. P. (1993). Chapter 26: Statistical measures of reliability. Foundation of clinical research: Applications to practice. Norwich: Appleton and Lange.

    Google Scholar 

  • Real, R. (1999). Tables of significant values of Jaccard’s index of similarity. Miscellaneous Zoologica, 22(1), 29–40.

    Google Scholar 

  • Reddy, H., Lassonde, M., Bemasconi, N., Bemasconi, A., Matthews, P. M., Andermann, F., et al. (2000). An fMRI study of the lateralization of motor cortex activation in acallosal patients. Neuroreport, 11(11), 2409–2413.

    Article  CAS  PubMed  Google Scholar 

  • Riecker, A., Groschel, K., Ackermann, H., Steinbrink, C., Witte, O., & Kastrup, A. (2006). Functional significance of age-related differences in motor activation patterns. NeuroImage, 32, 1345–1354.

    Article  PubMed  Google Scholar 

  • Saad, Z. S., Glen, D. R., Chen, G., Beauchamp, M. S., Desai, R., & Cox, R. W. (2009). A new method for improving functional-to-structural MRI alignment using local Pearson correlation. NeuroImage, 44, 839–848.

    Article  PubMed Central  PubMed  Google Scholar 

  • Salthouse, T. A. (1996). The processing-speed theory of adult age differences in cognition. Psychol Rev, 103(3), 403–28.

  • Sattler, V., Dickler, M., Michaud, M., Meunier, S., Simonetta-Moreau, M. (2013). Does abnormal interhemispheric inhibition play a role in mirror dystonia? Movement Disorders.

  • Sherrington, C. S. (1932). Nobel Prize Lecture. http://www.nobelprize.org/nobel_prizes/medicine/laureates/1932/press.html. Accessed 28 April 2014.

  • Shmuel, A., Yacoub, E., Pfeuffer, J., Van de Moortele, P. F., Adriany, G., Hu, X., et al. (2002). Sustained negative BOLD, blood flow and oxygen consumption response and its coupling to the positive response in the human brain. Neuron, 36(6), 1195–1210.

    Article  CAS  PubMed  Google Scholar 

  • Shmuel, A., Augath, M., Oeltermann, A., & Logothetis, N. K. (2006). Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nature Neuroscience, 9(4), 569–577.

    Article  CAS  PubMed  Google Scholar 

  • Smith, A. T., et al. (2004). Negative BOLD in the visual cortex: evidence against blood stealing. Human Brain Mapping, 21(4), 213–220.

    Article  PubMed  Google Scholar 

  • Stagg, C. J., Bestmann, S., Constantinescu, A. O., Moreno, L. M., Allman, C., Mekle, R., et al. (2011) Relationship between physiological measures of excitability and levels of glutamate and GABA in the human motor cortex. Journal of Physiology, 589(Pt 23), 5845–55.

  • Stefanovic, B., Warnking, J. M., & Pike, G. B. (2004). Hemodynamic and metabolic responses to neuronal inhibition. NeuroImage, 22, 771–778.

    Article  PubMed  Google Scholar 

  • Talelli, P., Waddingham, W., Ewas, A., Rothwell, J. C., & Ward, N. S. (2008). The effect of age on task-related modulation of interhemispheric balance. Experimental Brain Research, 186, 59–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Verstynen, T., Spencer, R., Stinear, C. M., Konkle, T., Diedrichsen, J., Byblow, W. D., et al. (2007). Ipsilateral corticospinal projections do not predict congenital mirror movements: a case report. Neuropsychologia, 45, 844–852.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yousry, T. A., Schmid, U. D., Alkadhi, H., Schmidt, D., Peraud, A., Buettner, A., et al. (1997). Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain, 120(Pt 1), 141–57.

  • Yuan, H., Perdoni, C., Yang, L., & He, B. (2011). Differential electrophysiological coupling for positive and negative BOLD responses during unilateral hand movements. The Journal of Neuroscience, 31, 9585–9593.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zeharia, N., Hertz, U., Flash, T., & Amedi, A. (2012). Negative blood oxygenation level dependent homunculus and somatotopic information in primary motor cortex and supplementary motor area. Proceedings of the National Academy of Sciences of the United States of America, 109, 18565–18570.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The contents do not represent the views of the Department of Veterans Affairs or the United States Government. This work was supported by a Department of Veteran Affairs (VA) Rehabilitation R&D Center of Excellence #F2182C, Career Development Award Level-2 (KMM) and Senior Research Career Scientist (BC: #B6364L) awards.

Conflict of interest

Keith M. McGregor, Atchar Sudhyadhom, Joe Nocera, Ari Seff, Bruce Crosson, and Andrew J. Butler report no conflicts of interest.

Informed consent

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, and the applicable revisions at the time of the investigation. Informed consent was obtained from all patients for being included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keith M. McGregor.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 6

(JPG 12.1 kb)

High resolution image (EPS 956 mb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

McGregor, K.M., Sudhyadhom, A., Nocera, J. et al. Reliability of negative BOLD in ipsilateral sensorimotor areas during unimanual task activity. Brain Imaging and Behavior 9, 245–254 (2015). https://doi.org/10.1007/s11682-014-9302-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-014-9302-3

Keywords

  • fMRI
  • Ipsilateral inhibition
  • Negative BOLD
  • Reliability
  • Sensorimotor activity