Brain Imaging and Behavior

, Volume 8, Issue 4, pp 621–634 | Cite as

Brain activation during neurocognitive testing using functional near-infrared spectroscopy in patients following concussion compared to healthy controls

  • A. P. Kontos
  • T. J. Huppert
  • N. H. Beluk
  • R. J. Elbin
  • L. C. Henry
  • J. French
  • S. M. Dakan
  • M. W. Collins
Original Research

Abstract

There is no accepted clinical imaging modality for concussion, and current imaging modalities including fMRI, DTI, and PET are expensive and inaccessible to most clinics/patients. Functional near-infrared spectroscopy (fNIRS) is a non-invasive, portable, and low-cost imaging modality that can measure brain activity. The purpose of this study was to compare brain activity as measured by fNIRS in concussed and age-matched controls during the performance of cognitive tasks from a computerized neurocognitive test battery. Participants included nine currently symptomatic patients aged 18–45 years with a recent (15–45 days) sport-related concussion and five age-matched healthy controls. The participants completed a computerized neurocognitive test battery while wearing the fNIRS unit. Our results demonstrated reduced brain activation in the concussed subject group during word memory, (spatial) design memory, digit-symbol substitution (symbol match), and working memory (X’s and O’s) tasks. Behavioral performance (percent-correct and reaction time respectively) was lower for concussed participants on the word memory, design memory, and symbol match tasks than controls. The results of this preliminary study suggest that fNIRS could be a useful, portable assessment tool to assess reduced brain activation and augment current approaches to assessment and management of patients following concussion.

Keywords

Concussion Mild Traumatic Brain Injury Neurocognitive Testing Near Infrared Spectroscopy 

References

  1. Abdelnour, F., & Huppert, T. J. (2010). Group analysis for functional optical brain imaging using a random effects model. Biomedical Optics Express, 2, 1–25.Google Scholar
  2. Abdelnour, A. F., & Huppert, T. (2009). Real-time imaging of human brain function by near-infrared spectroscopy using an adaptive general linear model. NeuroImage, 46, 133–143.PubMedCentralPubMedCrossRefGoogle Scholar
  3. Abdelnour, A. F., & Huppert, T. J. (2011). A random-effects model for group-level analysis of diffuse optical brain imaging. Biomedical Optics Express, 2, 1–25.PubMedCentralCrossRefGoogle Scholar
  4. Abdelnour, F., Genovese, C., & Huppert, T. (2010). Hierarchical Bayesian regularization of reconstructions for diffuse optical tomography using multiple priors. Biomedical Optics Express, 1, 1084–1103.PubMedCentralPubMedCrossRefGoogle Scholar
  5. Adelson, P. D., Nemoto, E., Colak, A., & Painter, M. (1998). The use of near infrared spectroscopy (NIRS) in children after traumatic brain injury: a preliminary report. Acta Neurochirurgica Supplement, 71, 250–254.PubMedGoogle Scholar
  6. Alsalaheen, B. A., Mucha, A., Morris, L. O., Whitney, S. L., Furman, J. M., Camiolo-Reddy, C. E., et al. (2010). Vestibular rehabilitation for dizziness and balance disorders after concussion. Journal of Neurologic Physical Therapy, 34, 87–93.PubMedCrossRefGoogle Scholar
  7. Broshek, D. K., Kaushik, T., Freeman, J. R., Erlanger, D., Webbe, F., & Barth, J. T. (2005). Sex differences in outcome following sports-related concussion. Journal of Neurosurgery, 102, 856-863.Google Scholar
  8. Chen, J. K., Johnston, K. M., Frey, S., Petrides, M., Worsley, K., & Ptito, A. (2004). Functional abnormalities in symptomatic concussed athletes: an fMRI study. NeuroImage, 22, 68–82.PubMedCrossRefGoogle Scholar
  9. Chen, J. K., Johnston, K. M., Petrides, M., & Ptito, A. (2008). Neural substrates of symptoms of depression following concussion in male athletes with persisting postconcussion symptoms. Arch General Psychology, 65, 81–89.CrossRefGoogle Scholar
  10. Collie, A., Darby, D., & Maruff, P. (2001). Computerised cognitive assessment of athletes with sports related head injury. British Journal of Sports Medicine, 35, 297–302.Google Scholar
  11. Cope, M., Delpy, D. T., Reynolds, E. O., Wray, S., Wyatt, J., & van der Zee, P. (1988). Methods of quantitating cerebral near infrared spectroscopy data. Advances in Experimental Medicine and Biology, 222, 183–189.PubMedCrossRefGoogle Scholar
  12. Cox, R. W. (1996). AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29, 162–173.PubMedCrossRefGoogle Scholar
  13. Custo, A., Wells, W. M., 3rd, Barnett, A. H., Hillman, E. M., & Boas, D. A. (2006). Effective scattering coefficient of the cerebral spinal fluid in adult head models for diffuse optical imaging. Applied Optics, 45, 4747–4755.PubMedCrossRefGoogle Scholar
  14. Dehghani, H., Eames, M. E., Yalavarthy, P. K., Davis, S. C., Srinivasan, S., Carpenter, C. M., et al. (2008). Near infrared optical tomography using NIRFAST: algorithm for numerical model and image reconstruction. Communications in Numerical Methods in Engineering, 25, 711–732.PubMedCentralPubMedCrossRefGoogle Scholar
  15. Dick, R. W. (2009). Is there a gender difference in concussion incidence and outcomes? British Journal of Sports Medicine, 43, 46–50.Google Scholar
  16. Erlanger, D., Feldman, D., Kutner, K., Kaushik, T., Kroger, H., Fes- ta, J., et al. (2003). Development and validation of a Web-based neuropsychological test protocol for sports-related return-to-play decision-making. Archives of Clinical Neuropsychology, 18, 293–316.Google Scholar
  17. Friston, K. (2007). Statistical parametric mapping: the analysis of functional brain images. London: Academic.Google Scholar
  18. Frommer, L. J., Gurka, K. K., Cross, K. M., Ingersoll, C. D., & Comstock, S. A. (2011). Sex differences in concussion symptoms of high school athletes. Journal of Athletic Training, 46, 76–84.Google Scholar
  19. Giza, C. C., & Hovda, D. A. (2001). The Neurometabolic Cascade of Concussion. Journal of Athletic Training, 36, 228–235.PubMedCentralPubMedGoogle Scholar
  20. Haitsma, I. K., & Maas, A. I. (2007). Monitoring cerebral oxygenation in traumatic brain injury. Progress in Brain Research, 161, 207–216.PubMedCrossRefGoogle Scholar
  21. Holmes, C. J., Hoge, R., Collins, L., Woods, R., Toga, A. W., & Evans, A. C. (1998). Enhancement of MR images using registration for signal averaging. Journal of Computer Assisted Tomography, 22, 324–333.PubMedCrossRefGoogle Scholar
  22. Huppert, T. J., Diamond, S. G., & Boas, D. A. (2008). Direct estimation of evoked hemoglobin changes by multimodality fusion imaging. Journal of Biomedical Optics, 13, 054031.PubMedCentralPubMedCrossRefGoogle Scholar
  23. Huppert, T. J., Diamond, S. G., Franceschini, M. A., & Boas, D. A. (2009). HomER: a review of time-series analysis methods for near-infrared spectroscopy of the brain. Applied Optics, 48, D280–D298.PubMedCentralPubMedCrossRefGoogle Scholar
  24. Jantzen, K. J., Anderson, B., Steinberg, F. L., & Kelso, J. A. (2004). A prospective functional MR imaging study of mild traumatic brain injury in college football players. AJNR American Journal of Neuroradiology, 25, 738–745.PubMedGoogle Scholar
  25. Jobsis, F. F. (1977). Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science, 198, 1264–1267.PubMedCrossRefGoogle Scholar
  26. Johnson, B., Zhang, K., Gay, M., Horovits, S., Hallett, M., Sebastianelli, W., et al. (2012). Alteration of brain default network in subacute phase of injury in concussed individuals: resting state fMRI study. Neuroimage, 59, 511–518.Google Scholar
  27. Langlois, J. A., Rutland-Brown, W., & Wald, M. M. (2006). The epidemiology and impact of traumatic brain injury: a brief overview. The Journal of Head Trauma Rehabilitation, 21, 375–378.PubMedCrossRefGoogle Scholar
  28. Len, T. K., Neary, J. P., Asmundson, G. J., Goodman, D. G., Bjornson, B., & Bhambhani, Y. N. (2011). Cerebrovascular reactivity impairment after sport-induced concussion. Medicine and Science in Sports and Exercise, 43, 2241–2248.PubMedCrossRefGoogle Scholar
  29. León-Carrion, J., Damas-López, J., Martín-Rodríguez, J. F., Domínguez-Roldán, J. M., Murillo-Cabezas, F., Barroso, Y. et al. (2008). The hemodynamics of cognitive control: the level of concentration of oxygenated hemoglobin in the superior prefrontal cortex varies as a function of performance in a modified Stroop task. Behavioral Brain Research, 193, 248–256.Google Scholar
  30. Lovell, M. R., & Fazio, V. (2008). Concussion management in the child and adolescent athlete. Current Sports Medicine Reports, 7, 12–15.PubMedCrossRefGoogle Scholar
  31. Lovell, M. R., Pardini, J. E., Welling, J., Collins, M. W., Bakal, J., Lazar, N., et al. (2007). Functional brain abnormalities are related to clinical recovery and time to return-to-play in athletes. Neurosurgery, 61, 352–359. discussion 359-360.PubMedCrossRefGoogle Scholar
  32. Mattout, J., Phillips, C., Penny, W. D., Rugg, M. D., & Friston, K. J. (2006). MEG source localization under multiple constraints: an extended Bayesian framework. NeuroImage, 30, 753–767.PubMedCrossRefGoogle Scholar
  33. Maugans, T. A., Farley, C., Altaye, M., Leach, J., & Cecil, K. M. (2012). Pediatric sports-related concussion produces cerebral blood flow alterations. Pediatrics, 129, 28–37.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Mayer, A. R., Mannell, M. V., Ling, J., Elgie, R., Gasparovic, C., Phillips, J. P., et al. (2009). Auditory orienting and inhibition of return in mild traumatic brain injury: a FMRI study. Human Brain Mapping, 30, 4152–4166.PubMedCentralPubMedCrossRefGoogle Scholar
  35. McAllister, T. W., Sparling, M. B., Flashman, L. A., Guerin, S. J., Mamourian, A. C., & Saykin, A. J. (2001). Differential working memory load effects after mild traumatic brain injury. NeuroImage, 14, 1004–1012.PubMedCrossRefGoogle Scholar
  36. McAllister, T. W., Flashman, L. A., McDonald, B. C., & Saykin, A. J. (2006). Mechanisms of working memory dysfunction after mild and moderate TBI: evidence from functional MRI and neurogenetics. Journal of Neurotrauma, 23, 1450–1467.PubMedCrossRefGoogle Scholar
  37. McCrory, P., Meeuqisse, W., Johnston, K., Dvorak J., Aubry, M., Molloy, M., et al. (2009). Consensus statement on concussion in sport 3rd international conference on concussion held in Zurich, November 2008. Clinical Journal of Sport Medicine, 19, 185–200.Google Scholar
  38. McCrory, P., Meeuwisse, W. H., Aubry, M., et al. (2013). Consensus statement on concussion in sport: the 4th International Conference on Concussion in Sport held in Zurich, November 2012. British Journal of Sports Medicine, 47, 250–258.PubMedCrossRefGoogle Scholar
  39. McGrath, N. (2010). Supporting the student-athlete’s return to the classroom after a sport-related concussion. Journal of Athletic Training, 45, 492–498.PubMedCentralPubMedCrossRefGoogle Scholar
  40. Nakamura, T., Hillary, F. G., & Biswal, B. B. (2009). Resting network plasticity following brain injury. PLoS One, 4.Google Scholar
  41. Obrig, H., & Villringer, A. (2003). Beyond the visible–imaging the human brain with light. Journal of Cerebral Blood Flow and Metabolism, 23, 1–18.PubMedCrossRefGoogle Scholar
  42. Ptito, A., Chen, J. K., & Johnston, K. M. (2007). Contributions of functional magnetic resonance imaging (fMRI) to sport concussion evaluation. NeuroRehabilitation, 22, 217–227.PubMedGoogle Scholar
  43. Sicard, K. M., & Duong, T. Q. (2005). Effects of hypoxia, hyperoxia, and hypercapnia on baseline and stimulus-evoked BOLD, CBF, and CMRO2 in spontaneously breathing animals. NeuroImage, 25, 850–858.PubMedCentralPubMedCrossRefGoogle Scholar
  44. Slobounov, S. M., Zhang, K., Pennell, D., Ray, W., Johnson, B., & Sebastianelli, W. (2010). Functional abnormalities in normally appearing athletes following mild traumatic brain injury: a functional MRI study. Experimental Brain Research, 202, 341–354.PubMedCentralPubMedCrossRefGoogle Scholar
  45. Slobounov, S. M., Gay, M., Zhang, K., Johnson, B., Pennell, D., Sebastianelli, W., et al. (2011). Alteration of brain functional network at rest and in response to YMCA physical stress test in concussed athletes: RsFMRI study. NeuroImage, 55, 1716–1727.PubMedCentralPubMedCrossRefGoogle Scholar
  46. Slobounov, S., Gay, M., Johnson, B., & Zhang, K. (2012). Concussion in athletics: ongoing clinical and brain imaging research controversies. Brain Imaging and Behavior, 6, 224–243.PubMedCrossRefGoogle Scholar
  47. Soeda, A., Nakashima, T., Okumura, A., Kuwata, K., Shinoda, J., & Iwama, T. (2005). Cognitive impairment after traumatic brain injury: a functional magnetic resonance imaging study using the Stroop task. Neuroradiology, 47, 501–506.PubMedCrossRefGoogle Scholar
  48. Stulemeijer, M., Vos, P. E., van der Werf, S., van Dijk, G., Rijpkema, M., & Fernandez, G. (2010). How mild traumatic brain injury may affect declarative memory performance in the post-acute stage. Journal of Neurotrauma, 27, 1585–1595.PubMedCrossRefGoogle Scholar
  49. Van Kampen, D. A., Lovell, M. R., Pardini, J. E., Collins, M. W., & Fu, F. H. (2006). The “value added” of neurocognitive testing after sports-related concussion. The American Journal of Sports Medicine, 34, 1630–1635.PubMedCrossRefGoogle Scholar
  50. Weatherall, A., Skowno, J., Lansdown, A., Lupton, T., & Garner, A. (2012). Feasibility of cerebral near-infrared spectroscopy monitoring in the pre-hospital environment. Acta Anaesthesiologica Scandinavica, 56, 172–177.PubMedCrossRefGoogle Scholar
  51. Ye, J. C., Tak, S., Jang, K. E., Jung, J., & Jang, J. (2009). NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy. NeuroImage, 44, 428–447.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • A. P. Kontos
    • 1
    • 4
  • T. J. Huppert
    • 2
    • 3
  • N. H. Beluk
    • 2
  • R. J. Elbin
    • 1
  • L. C. Henry
    • 1
  • J. French
    • 1
  • S. M. Dakan
    • 1
  • M. W. Collins
    • 1
  1. 1.UPMC Sports Medicine Concussion Program/Department of Orthopaedic SurgeryUniversity of PittsburghPittsburghUSA
  2. 2.Department of RadiologyUniversity of PittsburghPittsburghUSA
  3. 3.Department of Biomedical EngineeringUniversity of PittsburghPittsburghUSA
  4. 4.UPMC Sports Medicine Concussion Program, Department of Orthopaedic SurgeryUniversity of Pittsburgh School of Medicine, UPMC Center for Sports MedicinePittsburghUSA

Personalised recommendations