Skip to main content

Advertisement

Log in

Graphical neuroimaging informatics: Application to Alzheimer’s disease

  • SI: Genetic Neuroimaging in Aging and Age-Related Diseases
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

The Informatics Visualization for Neuroimaging (INVIZIAN) framework allows one to graphically display image and meta-data information from sizeable collections of neuroimaging data as a whole using a dynamic and compelling user interface. Users can fluidly interact with an entire collection of cortical surfaces using only their mouse. In addition, users can cluster and group brains according in multiple ways for subsequent comparison using graphical data mining tools. In this article, we illustrate the utility of INVIZIAN for simultaneous exploration and mining a large collection of extracted cortical surface data arising in clinical neuroimaging studies of patients with Alzheimer’s Disease, mild cognitive impairment, as well as healthy control subjects. Alzheimer’s Disease is particularly interesting due to the wide-spread effects on cortical architecture and alterations of volume in specific brain areas associated with memory. We demonstrate INVIZIAN’s ability to render multiple brain surfaces from multiple diagnostic groups of subjects, showcase the interactivity of the system, and showcase how INVIZIAN can be employed to generate hypotheses about the collection of data which would be suitable for direct access to the underlying raw data and subsequent formal statistical analysis. Specifically, we use INVIZIAN show how cortical thickness and hippocampal volume differences between group are evident even in the absence of more formal hypothesis testing. In the context of neurological diseases linked to brain aging such as AD, INVIZIAN provides a unique means for considering the entirety of whole brain datasets, look for interesting relationships among them, and thereby derive new ideas for further research and study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Berretta, R., & Moscato, P. (2010). Cancer biomarker discovery: the entropic hallmark. PLoS ONE, 5(8), e12262.

    Article  PubMed Central  PubMed  Google Scholar 

  • Biswal, B. B., Mennes, M., Zuo, X. N., et al. (2010). Toward discovery science of human brain function. Proceedings of the National Academy of Sciences of the United States of America, 107(10), 4734–4739.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bowman, I., Joshi, S. H. and Van Horn, J. (2012). "Visual Systems for Interactive Exploration and Mining of Large-Scale Neuroimaging Data Archives." Frontiers in Neuroinformatics 6.

  • Bug, W., & Nissanov, J. (2003). A guide to building image-centric databases. Neuroinformatics, 1(4), 359–377.

    Article  PubMed  Google Scholar 

  • Carmichael, O. T., Aizenstein, H. A., Davis, S. W., et al. (2005). Atlas-based hippocampus segmentation in Alzheimer's disease and mild cognitive impairment. NeuroImage, 27(4), 979–990.

    Article  PubMed Central  PubMed  Google Scholar 

  • Carmichael, O., Schwarz, C., Drucker, D., et al. (2010). Longitudinal changes in white matter disease and cognition in the first year of the Alzheimer disease neuroimaging initiative. Archives of Neurology, 67(11), 1370–1378.

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen, C.-h., Härdle, W., Unwin, A., et al. (2008). Multidimensional Scaling. Handbook of Data Visualization, Springer Berlin Heidelberg: 315–347.

  • Chen, R. L., Guo, W., Shi, Y., et al. (2013). Computational identification of specific splicing regulatory elements from RNA-seq in lung cancer. European Review for Medical and Pharmacological Sciences, 17(13), 1716–1721.

    PubMed  Google Scholar 

  • Collins, D. L., Neelin, P., Peters, T. M., et al. (1994). Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. Journal of Computer Assisted Tomography, 18(2), 192–205.

    Article  CAS  PubMed  Google Scholar 

  • Cook, D., & Swayne, D. F. (2007). Interactive and Dynamic Graphics for Data Analysis: With R and GGobi. New Yourk: Springer.

    Book  Google Scholar 

  • Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage, 9(2), 179–194.

    Article  CAS  PubMed  Google Scholar 

  • Dinov, I. D., Van Horn, J. D., Lozev, K. M., et al. (2009). "Efficient, distributed and interactive neuroimaging data analysis using the LONI pipeline." Frontiers in Neuroinformatics 3.

  • Dinov, I., Van Horn, J., Lozev, K., et al. (2010). Efficient, distributed and interactive neuroimaging data analysis using the LONI pipeline. Frontiers in Neuroinformatics, 3(22), 1–10.

    Google Scholar 

  • Endert, A., Han, C., Maiti, D., et al. (2011). Observation-level interaction with statistical models for visual analytics. IEEE Symposium on Visual Analytics Science and Technology - VAST. S. a. W. Miksch, M. Providence, RI, IEEE Computer Society.

  • Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. NeuroImage, 9(2), 195–207.

    Article  CAS  PubMed  Google Scholar 

  • Goebel, R., Esposito, F., & Formisano, E. (2006). Analysis of functional image analysis contest (FIAC) data with brainvoyager QX: From single-subject to cortically aligned group general linear model analysis and self-organizing group independent component analysis. Human Brain Mapping, 27(5), 392–401.

    Article  PubMed  Google Scholar 

  • Guo, H., Rangarajan, A., & Joshi, S. C. (2005). 3-D diffeomorphic shape registration on hippocampal data sets. Med Image Comput Comput Assist Interv Int Conf Med Image Comput Comput Assist Interv, 8(Pt 2), 984–991.

    Google Scholar 

  • Iglesias, J. E., Konukoglu, E., Montillo, A., et al. (2011). Combining generative and discriminative models for semantic segmentation of CT scans via active learning. Inf Process Med Imaging, 22, 25–36.

    PubMed  Google Scholar 

  • Jack, C. R., Jr., Bernstein, M. A., Fox, N. C., et al. (2008). The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods. Journal of Magnetic Resonance Imaging, 27(4), 685–691.

    Article  PubMed Central  PubMed  Google Scholar 

  • Johansson, S., & Johansson, J. (2009). Interactive dimensionality reduction through user-defined combinations of quality metrics. IEEE Transactions on Visualization and Computer Graphics, 15(993–1000).

    Google Scholar 

  • Joshi, S. H., Van Horn, J. D., & Toga, A. W. (2009). Interactive exploration of neuroanatomical meta-spaces. Front Neuroinformatics, 3, 38.

    Article  PubMed Central  Google Scholar 

  • Joshi, S. H., Bowman, I., Toga, A. W., et al. (2011). "Brain Pattern Analysis of Cortical Valued Distributions." Proc IEEE Int Symp Biomed Imaging: 1117–1120.

  • Keim, D. A., & Kriegel, H. P. (1994). VisDB: database exploration using multi-dimensional visualization. IEEE Transactions on Computer Graphics and Applications, 14(5), 40–49.

    Article  Google Scholar 

  • Kohonen, T. (1998). Teh self-organizing map. Neurocomputing, 21(1–3), 1–6.

    Article  Google Scholar 

  • Kruskal, J. B., & Wish, M. (1978). Multidimensional Scaling. New York: Sage Publications.

    Google Scholar 

  • Kuriakose, J., Ghosh, A., Ravi Kumar, V., et al. (2004). Isometric graphing and multidimensional scaling for reaction–diffusion modeling on regular and fractal surfaces with spatiotemporal pattern recognition. Journal of Chemical Physics, 120(11), 5432–5443.

    Article  CAS  PubMed  Google Scholar 

  • Lancaster, J. L., Fox, P. T., Downs, H., et al. (1999). Global spatial normalization of human brain using convex hulls. Journal of Nuclear Medicine, 40(6), 942–955.

    CAS  PubMed  Google Scholar 

  • Lerch, J. P., Pruessner, J., Zijdenbos, A. P., et al. (2008). Automated cortical thickness measurements from MRI can accurately separate Alzheimer's patients from normal elderly controls. Neurobiology of Aging, 29(1), 23–30.

    Article  PubMed  Google Scholar 

  • Lu, C., Zheng, Y., Birkbeck, N., et al. (2012). Precise segmentation of multiple organs in CT volumes using learning-based approach and information theory. Med Image Comput Comput Assist Interv, 15(Pt 2), 462–469.

    PubMed  Google Scholar 

  • McCormick, P. S., Inman, J. M., Ahrens, J. P., et al. (2004). Scout: A Hardware-Accelerated System for Quantitatively Driven Visualization and Analysis. Visualization '04 (VIS '04). Washington, DC, USA: IEEE Computer Society.

    Google Scholar 

  • Mega, M., Dinov, I., Mazziotta, J., et al. (2005). Automated brain tissue assessment in the elderly and demented population: construction and validation of a sub-volume probabilistic brain atlas. NeuroImage, 26(4), 1009–1018.

    Article  PubMed  Google Scholar 

  • Megalooikonomou, V., Ford, J., Shen, L., et al. (2000). Data mining in brain imaging. Statistical Methods in Medical Research, 9(4), 359–394.

    Article  CAS  PubMed  Google Scholar 

  • Mennes, M., Biswal, B. B., Castellanos, F. X., et al. (2012). "Making data sharing work: The FCP/INDI experience." Neuroimage.

  • Narr, K. L., Bilder, R. M., Toga, A. W., et al. (2005). Mapping cortical thickness and gray matter concentration in first episode schizophrenia. Cerebral Cortex, 15(6), 708–719.

    Article  PubMed  Google Scholar 

  • Nowinski, W. L., & Belov, D. (2003). The Cerefy Neuroradiology Atlas: a Talairach-Tournoux atlas-based tool for analysis of neuroimages available over the internet. NeuroImage, 20(1), 50–57.

    Article  PubMed  Google Scholar 

  • Nowinski, W. L., & Thirunavuukarasuu, A. (2001). Atlas-assisted localization analysis of functional images. Medical Image Analysis, 5(3), 207–220.

    Article  CAS  PubMed  Google Scholar 

  • Rencher, A. C. (2002). Methods of Multivariate Analysis. New York: NY, John Wiley & Sons, Inc.

    Book  Google Scholar 

  • Sasahara, K., Hirata, Y., Toyoda, M., et al. (2013). Quantifying collective attention from tweet stream. PLoS ONE, 8(4), e61823.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shattuck, D. W., & Leahy, R. M. (2002). BrainSuite: an automated cortical surface identification tool. Medical Image Analysis, 6(2), 129–142.

    Article  PubMed  Google Scholar 

  • Stein, J. L., Medland, S. E., Vasquez, A. A., et al. (2012). Identification of common variants associated with human hippocampal and intracranial volumes. Nature Genetics, 44(5), 552–561.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Szalay, A., & Gray, J. (2001). The World-Wide Telescope. Science, 293(5537), 2037–2040.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, P. M., Mega, M. S., Woods, R. P., et al. (2001). Cortical change in Alzheimer's disease detected with a disease-specific population-based brain atlas. Cerebral Cortex, 11(1), 1–16.

    Article  CAS  PubMed  Google Scholar 

  • Van Horn, J. D., & Toga, A. W. (2009a). Brain Atlases: Their Development and Role in Functional Inference. In M. Filippi (Ed.), Functional MRI Techniques and Protocols. New York: Humana Press.

    Google Scholar 

  • Van Horn, J. D., & Toga, A. W. (2009b). Multisite neuroimaging trials. Current Opinion in Neurology, 22(4), 370–378.

    Article  PubMed Central  PubMed  Google Scholar 

  • Van Horn, J. D., Wolfe, J., Agnoli, A., et al. (2005). Neuroimaging databases as a resource for scientific discovery. International Review of Neurobiology, 66, 55–87.

    Article  PubMed  Google Scholar 

  • Voytek, J. B., & Voytek, B. (2012). Automated cognome construction and semi-automated hypothesis generation. Journal of Neuroscience Methods, 208(1), 92–100.

    Article  PubMed Central  PubMed  Google Scholar 

  • Williams, M. and Munzner, T. (2004). Steerable, progressive multidimensional scaling. IEEE Symposium on Information Vizualization, Washington, D.C., IEEE.

  • Winkler, A. M., Kochunov, P., Blangero, J., et al. (2010). Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. NeuroImage, 53(3), 1135–1146.

    Article  PubMed Central  PubMed  Google Scholar 

  • Xu, M., Thompson, P. M., & Toga, A. W. (2006). Adaptive reproducing kernel particle method for extraction of the cortical surface. IEEE Transactions on Medical Imaging, 25(6), 755–767.

    Article  CAS  PubMed  Google Scholar 

  • Yang, J., Peng, W., Ward, M. O., et al. (2003). Interactive hierarchical dimension ordering, spacing, and filtering for exploration of high dimensional datasets. Ninth Annual IEEE Conference on Information Visualization (INFOVIZ'03). Washington, D.C., IEEE Computer Society: 105–112.

  • Yang, J., Ward, M. O., Rundensteiner, E. A., et al. (2003). Visual hierarchical dimension reduction for exploration of high dimensional datasets. Symposium on Data Visualization, Aire-la-Ville, Switzerland, Euro-Graphics Association.

Download references

Acknowledgements

The authors wish to thank the faculty and staff of the Institute of Neuroimaging and Informatics of the University of Southern California and the Laboratory of Neuro Imaging (LONI) at the University of California Los Angeles. This work was supported by RC1 MH088194 and R01 MH100028 (sub-award) grants to JVH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Darrell Van Horn.

Additional information

Submitted to: Brain Imaging and Behavior Special Issue on Neuroimaging and Genetics in Aging and Age-related Disease

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Horn, J.D., Bowman, I., Joshi, S.H. et al. Graphical neuroimaging informatics: Application to Alzheimer’s disease. Brain Imaging and Behavior 8, 300–310 (2014). https://doi.org/10.1007/s11682-013-9273-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-013-9273-9

Keywords

Navigation