Advertisement

Brain Imaging and Behavior

, Volume 8, Issue 1, pp 52–59 | Cite as

Investigating the relation between striatal volume and IQ

  • Penny A. MacDonald
  • Hooman Ganjavi
  • D. Louis Collins
  • Alan C. Evans
  • Sherif Karama
Original Research

Abstract

The volume of the input region of the basal ganglia, the striatum, is reduced with aging and in a number of conditions associated with cognitive impairment. The aim of the current study was to investigate the relation between the volume of striatum and general cognitive ability in a sample of 303 healthy children that were sampled to be representative of the population of the United States. Correlations between the WASI-IQ and the left striatum, composed of the caudate nucleus and putamen, were significant. When these data were analyzed separately for male and female children, positive correlations were significant for the left striatum in male children only. This brain structure-behavior relation further promotes the increasingly accepted view that the striatum is intimately involved in higher order cognitive functions. Our results also suggest that the importance of these brain regions in cognitive ability might differ for male and female children.

Keywords

Basal ganglia Striatum Cognition IQ Gender 

Notes

Acknowledgments

Penny MacDonald was supported by a CIHR Clinician-Scientist Award. Sherif Karama receives salary support from the Fonds de recherche en santé du Québec.

References

  1. Abernethy, L. J., Cooke, R. W., & Foulder-Hughes, L. (2004). Caudate and hippocampal volumes, intelligence, and motor impairment in 7-year-old children who were born preterm. Pediatric Research, 55(5), 884–893.PubMedCrossRefGoogle Scholar
  2. Achenbach, T. M., & Dumenci, L. (2001). Advances in empirically based assessment: revised cross-informant syndromes and new DSM-oriented scales for the CBCL, YSR, and TRF: comment on Lengua, Sadowksi, Friedrich, and Fischer (2001). [Comment]. Journal of Consulting and Clinical Psychology, 69(4), 699–702.PubMedCrossRefGoogle Scholar
  3. Achenbach, T. M., & Ruffle, T. M. (2000). The Child Behavior Checklist and related forms for assessing behavioral/emotional problems and competencies. [Review]. Pediatrics in Review, 21(8), 265–271.PubMedCrossRefGoogle Scholar
  4. Ahn, M. S., Breeze, J. L., Makris, N., Kennedy, D. N., Hodge, S. M., Herbert, M. R., et al. (2007). Anatomic brain magnetic resonance imaging of the basal ganglia in pediatric bipolar disorder. Journal of Affective Disorders, 104(1–3), 147–154.PubMedCrossRefGoogle Scholar
  5. Andreasen, N. C., Flaum, M., Swayze, V., 2nd, O’Leary, D. S., Alliger, R., Cohen, G., et al. (1993). Intelligence and brain structure in normal individuals. The American Journal of Psychiatry, 150(1), 130–134.PubMedGoogle Scholar
  6. Bellebaum, C., & Daum, I. (2008). Learning-related changes in reward expectancy are reflected in the feedback-related negativity. European Journal of Neuroscience, 27(7), 1823–1835.PubMedCrossRefGoogle Scholar
  7. Bellebaum, C., Koch, B., Schwarz, M., & Daum, I. (2008). Focal basal ganglia lesions are associated with impairments in reward-based reversal learning. Brain, 131(Pt 3), 829–841.PubMedCrossRefGoogle Scholar
  8. Bloch, M. H., Leckman, J. F., Zhu, H., & Peterson, B. S. (2005). Caudate volumes in childhood predict symptom severity in adults with Tourette syndrome. Neurology, 65(8), 1253–1258.PubMedCrossRefPubMedCentralGoogle Scholar
  9. Carmona, S., Bassas, N., Rovira, M., Gispert, J. D., Soliva, J. C., Prado, M., et al. (2007). Pediatric OCD structural brain deficits in conflict monitoring circuits: a voxel-based morphometry study. Neuroscience Letters, 421(3), 218–223.PubMedCrossRefGoogle Scholar
  10. Castellanos, F. X., Lee, P. P., Sharp, W., Jeffries, N. O., Greenstein, D. K., Clasen, L. S., et al. (2002). Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. Journal of the American Medical Association, 288(14), 1740–1748.PubMedCrossRefGoogle Scholar
  11. Chang, L., Smith, L. M., LoPresti, C., Yonekura, M. L., Kuo, J., Walot, I., et al. (2004). Smaller subcortical volumes and cognitive deficits in children with prenatal methamphetamine exposure. Psychiatry Research, 132(2), 95–106.PubMedCrossRefGoogle Scholar
  12. Chang, L., Cloak, C., Patterson, K., Grob, C., Miller, E. N., & Ernst, T. (2005). Enlarged striatum in abstinent methamphetamine abusers: a possible compensatory response. Biological Psychiatry, 57(9), 967–974.PubMedCrossRefGoogle Scholar
  13. Collins, D. L., Neelin, P., Peters, T. M., & Evans, A. C. (1994). Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. Journal of Computer Assisted Tomography, 18(2), 192–205.PubMedCrossRefGoogle Scholar
  14. de Jong, L. W., van der Hiele, K., Veer, I. M., Houwing, J. J., Westendorp, R. G., Bollen, E. L., et al. (2008). Strongly reduced volumes of putamen and thalamus in Alzheimer’s disease: an MRI study. Brain, 131(Pt 12), 3277–3285.PubMedCrossRefGoogle Scholar
  15. Degos, J. D., da Fonseca, N., Gray, F., & Cesaro, P. (1993). Severe frontal syndrome associated with infarcts of the left anterior cingulate gyrus and the head of the right caudate nucleus. A clinico-pathological case. Brain, 116(Pt 6), 1541–1548.PubMedGoogle Scholar
  16. Di Martino, A., Scheres, A., Margulies, D. S., Kelly, A. M., Uddin, L. Q., Shehzad, Z., et al. (2008). Functional connectivity of human striatum: a resting state FMRI study. [Research Support, Non-U.S. Gov’t]. Cerebral Cortex, 18(12), 2735–2747.PubMedCrossRefGoogle Scholar
  17. Draganski, B., & May, A. (2008). Training-induced structural changes in the adult human brain. Behavioural Brain Research, 192(1), 137–142.PubMedCrossRefGoogle Scholar
  18. Ducharme, S., Hudziak, J. J., Botteron, K. N., Albaugh, M. D., Nguyen, T. V., Karama, S., et al. (2012). Decreased regional cortical thickness and thinning rate are associated with inattention symptoms in healthy children. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Journal of the American Academy of Child and Adolescent Psychiatry, 51(1), 18–27 e12.PubMedCrossRefPubMedCentralGoogle Scholar
  19. Evans, A. C. (2006). The NIH MRI study of normal brain development. NeuroImage, 30(1), 184–202.PubMedCrossRefGoogle Scholar
  20. Floresco, S. B., Tse, M. T., & Ghods-Sharifi, S. (2008). Dopaminergic and glutamatergic regulation of effort- and delay-based decision making. Neuropsychopharmacology, 33(8), 1966–1979.PubMedCrossRefGoogle Scholar
  21. Ganjavi, H., Lewis, J. D., Bellec, P., MacDonald, P. A., Waber, D. P., Evans, A. C., et al. (2011). Negative associations between corpus callosum midsagittal area and IQ in a representative sample of healthy children and adolescents. [Multicenter Study Research Support, N.I.H., Extramural]. PLoS One, 6(5), e19698.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Goldstein, J. M., Seidman, L. J., Horton, N. J., Makris, N., Kennedy, D. N., Caviness, V. S., Jr., et al. (2001). Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cerebral Cortex, 11(6), 490–497.PubMedCrossRefGoogle Scholar
  23. Haier, R. J., Karama, S., Leyba, L., & Jung, R. E. (2009). MRI assessment of cortical thickness and functional activity changes in adolescent girls following three months of practice on a visual-spatial task. BMC Research Notes, 2, 174.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Jernigan, T. L., Ostergaard, A. L., & Fennema-Notestine, C. (2001). Mesial temporal, diencephalic, and striatal contributions to deficits in single word reading, word priming, and recognition memory. Journal of the International Neuropsychological Society, 7(1), 63–78.PubMedCrossRefGoogle Scholar
  25. Johansson, B. B. (2004). Brain plasticity in health and disease. The Keio Journal of Medicine, 53(4), 231–246.PubMedCrossRefGoogle Scholar
  26. Johnson, E. S., & Meade, A. C. (1987). Developmental patterns of spatial ability: an early sex difference. Child Development, 58(3), 725–740.PubMedCrossRefGoogle Scholar
  27. Kermadi, I., & Joseph, J. P. (1995). Activity in the caudate nucleus of monkey during spatial sequencing. Journal of Neurophysiology, 74(3), 911–933.PubMedGoogle Scholar
  28. Kesler, S. R., Reiss, A. L., Vohr, B., Watson, C., Schneider, K. C., Katz, K. H., et al. (2008). Brain volume reductions within multiple cognitive systems in male preterm children at age twelve. Journal of Pediatrics, 152(4), 513–520. 520 e511.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Kim, D. K., Kim, B. L., Sohn, S. E., Lim, S. W., Na, D. G., Paik, C. H., et al. (1999). Candidate neuroanatomic substrates of psychosis in old-aged depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 23(5), 793–807.CrossRefGoogle Scholar
  30. Kim, M. J., Hamilton, J. P., & Gotlib, I. H. (2008). Reduced caudate gray matter volume in women with major depressive disorder. Psychiatry Research, 164(2), 114–122.PubMedCrossRefPubMedCentralGoogle Scholar
  31. Kumar, R., Ahdout, R., Macey, P. M., Woo, M. A., Avedissian, C., Thompson, P. M., et al. (2009). Reduced caudate nuclei volumes in patients with congenital central hypoventilation syndrome. Neuroscience, 163(4), 1373–1379.PubMedCrossRefPubMedCentralGoogle Scholar
  32. Lange, N., Froimowitz, M. P., Bigler, E. D., & Lainhart, J. E. (2010). Associations between IQ, total and regional brain volumes, and demography in a large normative sample of healthy children and adolescents. Developmental Neuropsychology, 35(3), 296–317.PubMedCrossRefPubMedCentralGoogle Scholar
  33. Lenroot, R. K., Gogtay, N., Greenstein, D. K., Wells, E. M., Wallace, G. L., Clasen, L. S., et al. (2007). Sexual dimorphism of brain developmental trajectories during childhood and adolescence. NeuroImage, 36(4), 1065–1073.PubMedCrossRefPubMedCentralGoogle Scholar
  34. Looi, J. C., Lindberg, O., Zandbelt, B. B., Ostberg, P., Andersen, C., Botes, L., et al. (2008). Caudate nucleus volumes in frontotemporal lobar degeneration: differential atrophy in subtypes. AJNR. American Journal of Neuroradiology, 29(8), 1537–1543.PubMedCrossRefGoogle Scholar
  35. Lucas, C. P., Zhang, H., Fisher, P. W., Shaffer, D., Regier, D. A., Narrow, W. E., et al. (2001). The DISC Predictive Scales (DPS): efficiently screening for diagnoses. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Validation Studies]. Journal of the American Academy of Child and Adolescent Psychiatry, 40(4), 443–449.PubMedCrossRefGoogle Scholar
  36. MacDonald, P. A., & Monchi, O. (2011). Differential effects of dopaminergic therapies on dorsal and ventral striatum in Parkinson’s disease: implications for cognitive function. Parkinson’s Disease, 2011, 572743.PubMedPubMedCentralGoogle Scholar
  37. MacDonald, P. A., MacDonald, A. A., Seergobin, K. N., Tamjeedi, R., Ganjavi, H., Provost, J. S., et al. (2011). The effect of dopamine therapy on ventral and dorsal striatum-mediated cognition in Parkinson’s disease: support from functional MRI. Brain, 134(Pt 5), 1447–1463.PubMedCrossRefGoogle Scholar
  38. MacDonald, A. A., Monchi, O., Seergobin, K. N., Ganjavi, H., Tamjeedi, R., & MacDonald, P. A. (2013). Parkinson’s disease duration determines effect of dopaminergic therapy on ventral striatum function. Movement Disorders, 28(2), 153–160.PubMedCrossRefGoogle Scholar
  39. Mandelli, M. L., Savoiardo, M., Minati, L., Mariotti, C., Aquino, D., Erbetta, A., et al. (2010). Decreased diffusivity in the caudate nucleus of presymptomatic huntington disease gene carriers: which explanation? AJNR. American Journal of Neuroradiology, 31(4), 706–710.PubMedCrossRefGoogle Scholar
  40. Middleton, F. A., & Strick, P. L. (2000). Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Research. Brain Research Reviews, 31(2–3), 236–250.PubMedCrossRefGoogle Scholar
  41. Moffat, S. D., Kennedy, K. M., Rodrigue, K. M., & Raz, N. (2007). Extrahippocampal contributions to age differences in human spatial navigation. Cerebral Cortex, 17(6), 1274–1282.PubMedCrossRefGoogle Scholar
  42. Monchi, O., Petrides, M., Strafella, A. P., Worsley, K. J., & Doyon, J. (2006). Functional role of the basal ganglia in the planning and execution of actions. Annals of Neurology, 59(2), 257–264.PubMedCrossRefGoogle Scholar
  43. Ostby, Y., Tamnes, C. K., Fjell, A. M., Westlye, L. T., Due-Tonnessen, P., & Walhovd, K. B. (2009). Heterogeneity in subcortical brain development: a structural magnetic resonance imaging study of brain maturation from 8 to 30 years. Journal of Neuroscience, 29(38), 11772–11782.PubMedCrossRefGoogle Scholar
  44. Peinemann, A., Schuller, S., Pohl, C., Jahn, T., Weindl, A., & Kassubek, J. (2005). Executive dysfunction in early stages of Huntington’s disease is associated with striatal and insular atrophy: a neuropsychological and voxel-based morphometric study. Journal of the Neurological Sciences, 239(1), 11–19.PubMedCrossRefGoogle Scholar
  45. Peterson, B., Riddle, M. A., Cohen, D. J., Katz, L. D., Smith, J. C., Hardin, M. T., et al. (1993). Reduced basal ganglia volumes in Tourette’s syndrome using three-dimensional reconstruction techniques from magnetic resonance images. Neurology, 43(5), 941–949.PubMedCrossRefGoogle Scholar
  46. Postuma, R. B., & Dagher, A. (2006). Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. [Meta-Analysis]. Cerebral Cortex, 16(10), 1508–1521.PubMedCrossRefGoogle Scholar
  47. Raz, N., Rodrigue, K. M., Kennedy, K. M., Head, D., Gunning-Dixon, F., & Acker, J. D. (2003). Differential aging of the human striatum: longitudinal evidence. AJNR. American Journal of Neuroradiology, 24(9), 1849–1856.PubMedGoogle Scholar
  48. Reiss, A. L., Faruque, F., Naidu, S., Abrams, M., Beaty, T., Bryan, R. N., et al. (1993). Neuroanatomy of Rett syndrome: a volumetric imaging study. Annals of Neurology, 34(2), 227–234.PubMedCrossRefGoogle Scholar
  49. Rieger, M., Gauggel, S., & Burmeister, K. (2003). Inhibition of ongoing responses following frontal, nonfrontal, and basal ganglia lesions. Neuropsychology, 17(2), 272–282.PubMedCrossRefGoogle Scholar
  50. Rotge, J. Y., Guehl, D., Dilharreguy, B., Tignol, J., Bioulac, B., Allard, M., et al. (2009). Meta-analysis of brain volume changes in obsessive-compulsive disorder. Biological Psychiatry, 65(1), 75–83.PubMedCrossRefGoogle Scholar
  51. Seger, C. A., Peterson, E. J., Cincotta, C. M., Lopez-Paniagua, D., & Anderson, C. W. (2010). Dissociating the contributions of independent corticostriatal systems to visual categorization learning through the use of reinforcement learning modeling and Granger causality modeling. NeuroImage, 50(2), 644–656.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Semrud-Clikeman, M., Pliszka, S. R., Lancaster, J., & Liotti, M. (2006). Volumetric MRI differences in treatment-naive vs chronically treated children with ADHD. Neurology, 67(6), 1023–1027.PubMedCrossRefGoogle Scholar
  53. Shaffer, D., Fisher, P., Lucas, C. P., Dulcan, M. K., & Schwab-Stone, M. E. (2000). NIMH Diagnostic Interview Schedule for Children Version IV (NIMH DISC-IV): description, differences from previous versions, and reliability of some common diagnoses. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Journal of the American Academy of Child and Adolescent Psychiatry, 39(1), 28–38.PubMedCrossRefGoogle Scholar
  54. Silk, T. J., Vance, A., Rinehart, N., Bradshaw, J. L., & Cunnington, R. (2009). Structural development of the basal ganglia in attention deficit hyperactivity disorder: a diffusion tensor imaging study. Psychiatry Research, 172(3), 220–225.PubMedCrossRefGoogle Scholar
  55. Singer, H. S., Reiss, A. L., Brown, J. E., Aylward, E. H., Shih, B., Chee, E., et al. (1993). Volumetric MRI changes in basal ganglia of children with Tourette’s syndrome. Neurology, 43(5), 950–956.PubMedCrossRefGoogle Scholar
  56. Skranes, J. S., Vik, T., Nilsen, G., Smevik, O., Andersson, H. W., & Brubakk, A. M. (1997). Cerebral magnetic resonance imaging and mental and motor function of very low birth weight children at six years of age. Neuropediatrics, 28(3), 149–154.PubMedCrossRefGoogle Scholar
  57. Soliva, J. C., Fauquet, J., Bielsa, A., Rovira, M., Carmona, S., Ramos-Quiroga, J. A., et al. (2010). Quantitative MR analysis of caudate abnormalities in pediatric ADHD: proposal for a diagnostic test. Psychiatry Research, 182(3), 238–243.PubMedCrossRefGoogle Scholar
  58. Wickens, J. R., Budd, C. S., Hyland, B. I., & Arbuthnott, G. W. (2007). Striatal contributions to reward and decision making: making sense of regional variations in a reiterated processing matrix. Annals of the New York Academy of Sciences, 1104, 192–212.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Penny A. MacDonald
    • 1
    • 2
  • Hooman Ganjavi
    • 3
  • D. Louis Collins
    • 4
  • Alan C. Evans
    • 4
  • Sherif Karama
    • 4
    • 5
  1. 1.The Brain and Mind Institute, Natural Sciences CentreRoom 226, University of Western OntarioLondonCanada
  2. 2.Department of Clinical Neurological SciencesUniversity of Western OntarioLondonCanada
  3. 3.Department of PsychiatryUniversity of Western OntarioLondonCanada
  4. 4.McConnell Brain Imaging Centre, Montreal Neurological InstituteMcGill UniversityMontréalCanada
  5. 5.Department of Psychiatry, Douglas Mental Health University InstituteMcGill UniversityMontréalCanada

Personalised recommendations