Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Investigating the relation between striatal volume and IQ


The volume of the input region of the basal ganglia, the striatum, is reduced with aging and in a number of conditions associated with cognitive impairment. The aim of the current study was to investigate the relation between the volume of striatum and general cognitive ability in a sample of 303 healthy children that were sampled to be representative of the population of the United States. Correlations between the WASI-IQ and the left striatum, composed of the caudate nucleus and putamen, were significant. When these data were analyzed separately for male and female children, positive correlations were significant for the left striatum in male children only. This brain structure-behavior relation further promotes the increasingly accepted view that the striatum is intimately involved in higher order cognitive functions. Our results also suggest that the importance of these brain regions in cognitive ability might differ for male and female children.

This is a preview of subscription content, log in to check access.

Fig. 1


  1. Abernethy, L. J., Cooke, R. W., & Foulder-Hughes, L. (2004). Caudate and hippocampal volumes, intelligence, and motor impairment in 7-year-old children who were born preterm. Pediatric Research, 55(5), 884–893.

  2. Achenbach, T. M., & Dumenci, L. (2001). Advances in empirically based assessment: revised cross-informant syndromes and new DSM-oriented scales for the CBCL, YSR, and TRF: comment on Lengua, Sadowksi, Friedrich, and Fischer (2001). [Comment]. Journal of Consulting and Clinical Psychology, 69(4), 699–702.

  3. Achenbach, T. M., & Ruffle, T. M. (2000). The Child Behavior Checklist and related forms for assessing behavioral/emotional problems and competencies. [Review]. Pediatrics in Review, 21(8), 265–271.

  4. Ahn, M. S., Breeze, J. L., Makris, N., Kennedy, D. N., Hodge, S. M., Herbert, M. R., et al. (2007). Anatomic brain magnetic resonance imaging of the basal ganglia in pediatric bipolar disorder. Journal of Affective Disorders, 104(1–3), 147–154.

  5. Andreasen, N. C., Flaum, M., Swayze, V., 2nd, O’Leary, D. S., Alliger, R., Cohen, G., et al. (1993). Intelligence and brain structure in normal individuals. The American Journal of Psychiatry, 150(1), 130–134.

  6. Bellebaum, C., & Daum, I. (2008). Learning-related changes in reward expectancy are reflected in the feedback-related negativity. European Journal of Neuroscience, 27(7), 1823–1835.

  7. Bellebaum, C., Koch, B., Schwarz, M., & Daum, I. (2008). Focal basal ganglia lesions are associated with impairments in reward-based reversal learning. Brain, 131(Pt 3), 829–841.

  8. Bloch, M. H., Leckman, J. F., Zhu, H., & Peterson, B. S. (2005). Caudate volumes in childhood predict symptom severity in adults with Tourette syndrome. Neurology, 65(8), 1253–1258.

  9. Carmona, S., Bassas, N., Rovira, M., Gispert, J. D., Soliva, J. C., Prado, M., et al. (2007). Pediatric OCD structural brain deficits in conflict monitoring circuits: a voxel-based morphometry study. Neuroscience Letters, 421(3), 218–223.

  10. Castellanos, F. X., Lee, P. P., Sharp, W., Jeffries, N. O., Greenstein, D. K., Clasen, L. S., et al. (2002). Developmental trajectories of brain volume abnormalities in children and adolescents with attention-deficit/hyperactivity disorder. Journal of the American Medical Association, 288(14), 1740–1748.

  11. Chang, L., Smith, L. M., LoPresti, C., Yonekura, M. L., Kuo, J., Walot, I., et al. (2004). Smaller subcortical volumes and cognitive deficits in children with prenatal methamphetamine exposure. Psychiatry Research, 132(2), 95–106.

  12. Chang, L., Cloak, C., Patterson, K., Grob, C., Miller, E. N., & Ernst, T. (2005). Enlarged striatum in abstinent methamphetamine abusers: a possible compensatory response. Biological Psychiatry, 57(9), 967–974.

  13. Collins, D. L., Neelin, P., Peters, T. M., & Evans, A. C. (1994). Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. Journal of Computer Assisted Tomography, 18(2), 192–205.

  14. de Jong, L. W., van der Hiele, K., Veer, I. M., Houwing, J. J., Westendorp, R. G., Bollen, E. L., et al. (2008). Strongly reduced volumes of putamen and thalamus in Alzheimer’s disease: an MRI study. Brain, 131(Pt 12), 3277–3285.

  15. Degos, J. D., da Fonseca, N., Gray, F., & Cesaro, P. (1993). Severe frontal syndrome associated with infarcts of the left anterior cingulate gyrus and the head of the right caudate nucleus. A clinico-pathological case. Brain, 116(Pt 6), 1541–1548.

  16. Di Martino, A., Scheres, A., Margulies, D. S., Kelly, A. M., Uddin, L. Q., Shehzad, Z., et al. (2008). Functional connectivity of human striatum: a resting state FMRI study. [Research Support, Non-U.S. Gov’t]. Cerebral Cortex, 18(12), 2735–2747.

  17. Draganski, B., & May, A. (2008). Training-induced structural changes in the adult human brain. Behavioural Brain Research, 192(1), 137–142.

  18. Ducharme, S., Hudziak, J. J., Botteron, K. N., Albaugh, M. D., Nguyen, T. V., Karama, S., et al. (2012). Decreased regional cortical thickness and thinning rate are associated with inattention symptoms in healthy children. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. Journal of the American Academy of Child and Adolescent Psychiatry, 51(1), 18–27 e12.

  19. Evans, A. C. (2006). The NIH MRI study of normal brain development. NeuroImage, 30(1), 184–202.

  20. Floresco, S. B., Tse, M. T., & Ghods-Sharifi, S. (2008). Dopaminergic and glutamatergic regulation of effort- and delay-based decision making. Neuropsychopharmacology, 33(8), 1966–1979.

  21. Ganjavi, H., Lewis, J. D., Bellec, P., MacDonald, P. A., Waber, D. P., Evans, A. C., et al. (2011). Negative associations between corpus callosum midsagittal area and IQ in a representative sample of healthy children and adolescents. [Multicenter Study Research Support, N.I.H., Extramural]. PLoS One, 6(5), e19698.

  22. Goldstein, J. M., Seidman, L. J., Horton, N. J., Makris, N., Kennedy, D. N., Caviness, V. S., Jr., et al. (2001). Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cerebral Cortex, 11(6), 490–497.

  23. Haier, R. J., Karama, S., Leyba, L., & Jung, R. E. (2009). MRI assessment of cortical thickness and functional activity changes in adolescent girls following three months of practice on a visual-spatial task. BMC Research Notes, 2, 174.

  24. Jernigan, T. L., Ostergaard, A. L., & Fennema-Notestine, C. (2001). Mesial temporal, diencephalic, and striatal contributions to deficits in single word reading, word priming, and recognition memory. Journal of the International Neuropsychological Society, 7(1), 63–78.

  25. Johansson, B. B. (2004). Brain plasticity in health and disease. The Keio Journal of Medicine, 53(4), 231–246.

  26. Johnson, E. S., & Meade, A. C. (1987). Developmental patterns of spatial ability: an early sex difference. Child Development, 58(3), 725–740.

  27. Kermadi, I., & Joseph, J. P. (1995). Activity in the caudate nucleus of monkey during spatial sequencing. Journal of Neurophysiology, 74(3), 911–933.

  28. Kesler, S. R., Reiss, A. L., Vohr, B., Watson, C., Schneider, K. C., Katz, K. H., et al. (2008). Brain volume reductions within multiple cognitive systems in male preterm children at age twelve. Journal of Pediatrics, 152(4), 513–520. 520 e511.

  29. Kim, D. K., Kim, B. L., Sohn, S. E., Lim, S. W., Na, D. G., Paik, C. H., et al. (1999). Candidate neuroanatomic substrates of psychosis in old-aged depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 23(5), 793–807.

  30. Kim, M. J., Hamilton, J. P., & Gotlib, I. H. (2008). Reduced caudate gray matter volume in women with major depressive disorder. Psychiatry Research, 164(2), 114–122.

  31. Kumar, R., Ahdout, R., Macey, P. M., Woo, M. A., Avedissian, C., Thompson, P. M., et al. (2009). Reduced caudate nuclei volumes in patients with congenital central hypoventilation syndrome. Neuroscience, 163(4), 1373–1379.

  32. Lange, N., Froimowitz, M. P., Bigler, E. D., & Lainhart, J. E. (2010). Associations between IQ, total and regional brain volumes, and demography in a large normative sample of healthy children and adolescents. Developmental Neuropsychology, 35(3), 296–317.

  33. Lenroot, R. K., Gogtay, N., Greenstein, D. K., Wells, E. M., Wallace, G. L., Clasen, L. S., et al. (2007). Sexual dimorphism of brain developmental trajectories during childhood and adolescence. NeuroImage, 36(4), 1065–1073.

  34. Looi, J. C., Lindberg, O., Zandbelt, B. B., Ostberg, P., Andersen, C., Botes, L., et al. (2008). Caudate nucleus volumes in frontotemporal lobar degeneration: differential atrophy in subtypes. AJNR. American Journal of Neuroradiology, 29(8), 1537–1543.

  35. Lucas, C. P., Zhang, H., Fisher, P. W., Shaffer, D., Regier, D. A., Narrow, W. E., et al. (2001). The DISC Predictive Scales (DPS): efficiently screening for diagnoses. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S. Validation Studies]. Journal of the American Academy of Child and Adolescent Psychiatry, 40(4), 443–449.

  36. MacDonald, P. A., & Monchi, O. (2011). Differential effects of dopaminergic therapies on dorsal and ventral striatum in Parkinson’s disease: implications for cognitive function. Parkinson’s Disease, 2011, 572743.

  37. MacDonald, P. A., MacDonald, A. A., Seergobin, K. N., Tamjeedi, R., Ganjavi, H., Provost, J. S., et al. (2011). The effect of dopamine therapy on ventral and dorsal striatum-mediated cognition in Parkinson’s disease: support from functional MRI. Brain, 134(Pt 5), 1447–1463.

  38. MacDonald, A. A., Monchi, O., Seergobin, K. N., Ganjavi, H., Tamjeedi, R., & MacDonald, P. A. (2013). Parkinson’s disease duration determines effect of dopaminergic therapy on ventral striatum function. Movement Disorders, 28(2), 153–160.

  39. Mandelli, M. L., Savoiardo, M., Minati, L., Mariotti, C., Aquino, D., Erbetta, A., et al. (2010). Decreased diffusivity in the caudate nucleus of presymptomatic huntington disease gene carriers: which explanation? AJNR. American Journal of Neuroradiology, 31(4), 706–710.

  40. Middleton, F. A., & Strick, P. L. (2000). Basal ganglia and cerebellar loops: motor and cognitive circuits. Brain Research. Brain Research Reviews, 31(2–3), 236–250.

  41. Moffat, S. D., Kennedy, K. M., Rodrigue, K. M., & Raz, N. (2007). Extrahippocampal contributions to age differences in human spatial navigation. Cerebral Cortex, 17(6), 1274–1282.

  42. Monchi, O., Petrides, M., Strafella, A. P., Worsley, K. J., & Doyon, J. (2006). Functional role of the basal ganglia in the planning and execution of actions. Annals of Neurology, 59(2), 257–264.

  43. Ostby, Y., Tamnes, C. K., Fjell, A. M., Westlye, L. T., Due-Tonnessen, P., & Walhovd, K. B. (2009). Heterogeneity in subcortical brain development: a structural magnetic resonance imaging study of brain maturation from 8 to 30 years. Journal of Neuroscience, 29(38), 11772–11782.

  44. Peinemann, A., Schuller, S., Pohl, C., Jahn, T., Weindl, A., & Kassubek, J. (2005). Executive dysfunction in early stages of Huntington’s disease is associated with striatal and insular atrophy: a neuropsychological and voxel-based morphometric study. Journal of the Neurological Sciences, 239(1), 11–19.

  45. Peterson, B., Riddle, M. A., Cohen, D. J., Katz, L. D., Smith, J. C., Hardin, M. T., et al. (1993). Reduced basal ganglia volumes in Tourette’s syndrome using three-dimensional reconstruction techniques from magnetic resonance images. Neurology, 43(5), 941–949.

  46. Postuma, R. B., & Dagher, A. (2006). Basal ganglia functional connectivity based on a meta-analysis of 126 positron emission tomography and functional magnetic resonance imaging publications. [Meta-Analysis]. Cerebral Cortex, 16(10), 1508–1521.

  47. Raz, N., Rodrigue, K. M., Kennedy, K. M., Head, D., Gunning-Dixon, F., & Acker, J. D. (2003). Differential aging of the human striatum: longitudinal evidence. AJNR. American Journal of Neuroradiology, 24(9), 1849–1856.

  48. Reiss, A. L., Faruque, F., Naidu, S., Abrams, M., Beaty, T., Bryan, R. N., et al. (1993). Neuroanatomy of Rett syndrome: a volumetric imaging study. Annals of Neurology, 34(2), 227–234.

  49. Rieger, M., Gauggel, S., & Burmeister, K. (2003). Inhibition of ongoing responses following frontal, nonfrontal, and basal ganglia lesions. Neuropsychology, 17(2), 272–282.

  50. Rotge, J. Y., Guehl, D., Dilharreguy, B., Tignol, J., Bioulac, B., Allard, M., et al. (2009). Meta-analysis of brain volume changes in obsessive-compulsive disorder. Biological Psychiatry, 65(1), 75–83.

  51. Seger, C. A., Peterson, E. J., Cincotta, C. M., Lopez-Paniagua, D., & Anderson, C. W. (2010). Dissociating the contributions of independent corticostriatal systems to visual categorization learning through the use of reinforcement learning modeling and Granger causality modeling. NeuroImage, 50(2), 644–656.

  52. Semrud-Clikeman, M., Pliszka, S. R., Lancaster, J., & Liotti, M. (2006). Volumetric MRI differences in treatment-naive vs chronically treated children with ADHD. Neurology, 67(6), 1023–1027.

  53. Shaffer, D., Fisher, P., Lucas, C. P., Dulcan, M. K., & Schwab-Stone, M. E. (2000). NIMH Diagnostic Interview Schedule for Children Version IV (NIMH DISC-IV): description, differences from previous versions, and reliability of some common diagnoses. [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, P.H.S.]. Journal of the American Academy of Child and Adolescent Psychiatry, 39(1), 28–38.

  54. Silk, T. J., Vance, A., Rinehart, N., Bradshaw, J. L., & Cunnington, R. (2009). Structural development of the basal ganglia in attention deficit hyperactivity disorder: a diffusion tensor imaging study. Psychiatry Research, 172(3), 220–225.

  55. Singer, H. S., Reiss, A. L., Brown, J. E., Aylward, E. H., Shih, B., Chee, E., et al. (1993). Volumetric MRI changes in basal ganglia of children with Tourette’s syndrome. Neurology, 43(5), 950–956.

  56. Skranes, J. S., Vik, T., Nilsen, G., Smevik, O., Andersson, H. W., & Brubakk, A. M. (1997). Cerebral magnetic resonance imaging and mental and motor function of very low birth weight children at six years of age. Neuropediatrics, 28(3), 149–154.

  57. Soliva, J. C., Fauquet, J., Bielsa, A., Rovira, M., Carmona, S., Ramos-Quiroga, J. A., et al. (2010). Quantitative MR analysis of caudate abnormalities in pediatric ADHD: proposal for a diagnostic test. Psychiatry Research, 182(3), 238–243.

  58. Wickens, J. R., Budd, C. S., Hyland, B. I., & Arbuthnott, G. W. (2007). Striatal contributions to reward and decision making: making sense of regional variations in a reiterated processing matrix. Annals of the New York Academy of Sciences, 1104, 192–212.

Download references


Penny MacDonald was supported by a CIHR Clinician-Scientist Award. Sherif Karama receives salary support from the Fonds de recherche en santé du Québec.

Author information

Correspondence to Penny A. MacDonald.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

MacDonald, P.A., Ganjavi, H., Collins, D.L. et al. Investigating the relation between striatal volume and IQ. Brain Imaging and Behavior 8, 52–59 (2014).

Download citation


  • Basal ganglia
  • Striatum
  • Cognition
  • IQ
  • Gender