Skip to main content
Log in

Early metabolic crisis-related brain atrophy and cognition in traumatic brain injury

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

Traumatic brain injury often results in acute metabolic crisis. We recently demonstrated that this is associated with chronic brain atrophy, which is most prominent in the frontal and temporal lobes. Interestingly, the neuropsychological profile of traumatic brain injury is often characterized as ‘frontal-temporal’ in nature, suggesting a possible link between acute metabolic crisis-related brain atrophy and neurocognitive impairment in this population. While focal lesions and diffuse axonal injury have a well-established role in the neuropsychological deficits observed following traumatic brain injury, no studies to date have examined the possible contribution of acute metabolic crisis-related atrophy in the neuropsychological sequelae of traumatic brain injury. In the current study we employed positron emission tomography, magnetic resonance imaging, and neuropsychological assessments to ascertain the relationship between acute metabolic crisis-related brain atrophy and neurocognitive outcome in a sample of 14 right-handed traumatic brain injury survivors. We found that acute metabolic crisis‐related atrophy in the frontal and temporal lobes was associated with poorer attention, executive functioning, and psychomotor abilities at 12 months post-injury. Furthermore, participants with gross frontal and/or temporal lobe atrophy exhibited numerous clinically significant neuropsychological deficits in contrast to participants with other patterns of brain atrophy. Our findings suggest that interventions that reduce acute metabolic crisis may lead to improved functional outcomes for traumatic brain injury survivors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adams, J. H., & Jennett, D. I. G. (2001). The structural basis of moderate disability after traumatic brain injury. Journal of Neurology, Neurosurgery, and Psychiatry, 71, 521–524. doi:10.1136/jnnp.71.4.521.

    Article  PubMed  CAS  Google Scholar 

  • Adams, J. H., Doyle, D., Graham, D. I., Parker, L., & Scott, G. (1980). Brain damage in fatal non-missile head injury. Journal of Clinical Pathology, 33, 1132–1145. doi:10.1136/jcp.33.12.1132.

    Article  PubMed  CAS  Google Scholar 

  • Adams, J. H., Doyle, D., Ford, I., Gennarelli, T. A., Graham, D. I., & McLellan, D. R. (1989). Diffuse axonal injury in head injury: definition, diagnosis, and grading. Histopathology, 15, 49–59. doi:10.1111/j.1365-2559.1989.tb03040.x.

    Article  PubMed  CAS  Google Scholar 

  • Army Individual Test Battery. (1944). Manual of directions and scoring. Washington, D.C: War Department, Adjutant General’s Office.

    Google Scholar 

  • Auerbach, S. H. (1986). Neuroanatomical correlates of attention and memory in traumatic brain injury: an application of neurobehavioral subtypes. The Journal of Head Trauma Rehabilitation, 1, 1–12. doi:10.1097/00001199-198609000-00004.

    Article  Google Scholar 

  • Benton, A. L., Hamsher, K., Varney, N. R., & Spreen, O. (1983). Contributions to neuropsychological assessment. Oxford: New York.

    Google Scholar 

  • Bentourkia, M., Bol, A., Ivanoiu, A., Labar, D., Sibomana, M., Coppens, A., & De Volder, A. G. (2000). Comparison of regional cerebral blood flow and glucose metabolism in the normal brain: effect of aging. Journal of Neurological Science, 181, 19–28. doi:10.1016/S0022-510X(00)00396-8.

    Article  CAS  Google Scholar 

  • Bigler, E. D. (2001). Quantitative magnetic resonance imaging in traumatic brain injury. The Journal of Head Trauma Rehabilitation, 16, 117–134.

    Article  PubMed  CAS  Google Scholar 

  • Bohlman, L., & Knight, R. T. (1994). Electrophysiological dissociation of rapid memory mechanisms in humans. NeuroReport, 5, 1517–1521. doi:10.1097/00001756-199407000-00027.

    Article  Google Scholar 

  • Bor, D., Cumming, N., Scott, C. E. L., & Owen, A. M. (2004). Prefrontal cortical involvement in verbal encoding strategies. European Journal of Neuroscience, 19, 3365–3370. doi:10.1111/j.1460-9568.2004.03438.x.

    Article  PubMed  Google Scholar 

  • Clifton, G. L., Hayes, R. L., Levin, H. S., Michel, M. E., & Choi, S. C. (1992). Outcome measures for clinical trials involving traumatically brain-injured patients: report of a conference. Neurosurgery, 31, 975–978.

    Article  PubMed  CAS  Google Scholar 

  • Corwin, J., & Bylsma, F. W. (1993). Psychological examination of traumatic encephalopathyby A. Rey and The Complex Figure Copy Test by P. A. Osterrieth. The Clinical Neuropsychologist, 7, 3–21.

    Article  Google Scholar 

  • Dinov, I. D., Van Horn, J. D., Lozev, K. M., Magsipoc, R., Petrosyan, P., Liu, Z., MacKenzie-Graham, A., & Toga, A. W. (2009). Efficient, distributed and interactive neuroimaging data analysis using the LONI pipeline. Frontiers in Neuroinformation, 3, 1–10. doi:10.3389/neuro.11.022.2009.

    Google Scholar 

  • Fork, M., Bartels, C., Ebert, A. D., Grubich, C., Synowitz, H., & Wallesch, C. (2005). Neuropsychological sequelae of diffuse traumatic brain injury. Brain Injury, 19, 101–108. doi:10.1080/02699050410001726086.

    Article  PubMed  Google Scholar 

  • Gleissner, U., Helmstaedter, C., Kurthen, M., & Elger, C. E. (1997). Evidence of very fast memory consolidation: an intracarotid amytal study. NeuroReporter, 8, 2893–2896. doi:10.1097/00001756-199709080-00018.

    Article  CAS  Google Scholar 

  • Glenn, T. C., Kelly, D. F., Boscardin, W. J., McArthur, D. L., Vespa, P., Oertel, M., & Martin, N. A. (2003). Energy dysfunction as a predictor of outcome after moderate or severe head injury: indices of oxygen, glucose, and lactate metabolism. Journal of Cerebral Blood Flow and Metabolism, 23, 1239–1250. doi:10.1097/01.WCB.0000089833.23606.7.

    PubMed  CAS  Google Scholar 

  • Habib, R., Nyberg, L., & Tulving, E. (2003). Hemispheric asymmetries of memory: the HERA model revisited. Trends in Cognitive Science, 7, 241–245. doi:10.1016/S1364-6613(03)00110-4.

    Article  Google Scholar 

  • Hannay, H. J., & Levin, H. S. (1985). Selective reminding test: an examination of the equivalence of four forms. Journal of Clinical and Experimental Neuropsychology, 7, 251–263. doi:10.1080/01688638508401258.

    Article  PubMed  CAS  Google Scholar 

  • Hattori, N., Hung, S. C., Wu, H. M., Yeh, E., Glenn, T. C., Vespa, P. M., & Bergsneider, M. (2003). Correlation of regional metabolic rates of glucose with Glasgow Coma Scale after traumatic brain injury. Journal of Nuclear Medicine, 44, 1709–1716.

    PubMed  Google Scholar 

  • Hayman, L. A. (1992). Adult cerebrum. In L. A. Hayman & V. Hinck (Eds.), Clinical brain imaging: normal structure and functional anatomy (pp. 130–137). St Louis: Mosby Year book.

    Google Scholar 

  • Head, D., Buckner, R. L., Shimony, J. S., Williams, L. E., Akbudak, E., Conturo, T. E., & Snyder, A. Z. (2004). Differential vulnerability of anterior white matter in nondemented aging with minimal acceleration in dementia of the Alzheimer type: evidence from diffusion tensor imaging. Cerebral Cortex, 14, 410–423. doi:10.1093/cercor/bhh003.

    Article  PubMed  Google Scholar 

  • Kraus, M. F., Susmaras, T., Caughlin, B. P., Walker, C. J., Sweeney, J. A., & Little, D. M. (2007). White matter integrity and cognition in chronic traumatic brain injury: a diffusion tensor imaging study. Brain, 130, 2508–2519. doi:10.1093/brain/awm216.

    Article  PubMed  Google Scholar 

  • Larrabee, G. J., Trahan, D. E., & Levin, H. S. (2000). Normative data for a six-trial administration of the verbal selective reminding test. Clinical Neuropsycholgy, 14, 110–118. doi:10.1076/1385-4046(200002)14:1;1-8;FT110.

    Article  CAS  Google Scholar 

  • Lehtonen, S., Stringer, A. Y., Millis, S., Boake, C., Englander, J., Hart, T., & Whyte, J. (2005). Neuropsychological outcome and community re-integration following traumatic brain injury: the impact of frontal and non-frontal lesions. Brain Injury, 19, 239–256. doi:10.1080/0269905040004310.

    Article  PubMed  CAS  Google Scholar 

  • Levine, B., Cabeza, R., McIntosh, A. R., Black, S. E., Grady, C. L., & Stuss, D. T. (2002). Functional reorganization of memory after traumatic brain injury: a study with H2 15O positron emission topography. Journal of Neurology, Neurosurgery & Psychiatry, 73, 173–181. doi:10.1136/jnnp.73.2.173.

    Article  CAS  Google Scholar 

  • Lezak, M. D., Howieson, D. B., Loring, D. W., Hannay, H. J., & Fischer, J. S. (2004). Neuropsychological assessment (4th ed., pp. 158–194). New York: Oxford University Press.

    Google Scholar 

  • Lin, K., Huang, S., Baxter, L., & Phelps, M. (1994). A general technique for inter-study registration of multi-function and multimodality images. IEEE Transactions on Nuclear Science, 41, 2850–2855.

    Article  Google Scholar 

  • Marcoux, J., McArthur, D. A., Miller, C., Glenn, T. C., Villablanca, P., Martin, N. A., & Vespa, P. M. (2008). Persistent metabolic crisis as measured by elevated cerebral microdialysis lactate-pyruvate ratio predicts chronic frontal lobe brain atrophy after traumatic brain injury. Critical Care Medicine, 36, 2871–2877.

    Article  PubMed  CAS  Google Scholar 

  • Matthews, C. G., & Klǿve, K. (1964). [Instruction manual] for the adult neuropsychology test battery. Madison: University of Wisconsin Medical School.

    Google Scholar 

  • Mitrushina, M., Boone, K. B., Razani, J., & D’Elia, L. F. (2005). Handbook of normative data for neuropsychological assessment (2nd ed.) (pp. 648, 760, 782, 969). New York: Oxford University Press.

  • National Institutes of Health. (1999). NIH consensus development panel on rehabilitation of persons with traumatic brain injury. Journal of the American Medical Association, 282, 974–983.

    Article  Google Scholar 

  • Ohta, S., Meyer, E., Thompson, C. J., & Gjedde, A. (1992). Oxygen consumption of the living human brain measured after a single inhalation of positron emitting oxygen. Journal of Cerebral Blood Flow and Metabolism, 12, 179–192.

    Article  PubMed  CAS  Google Scholar 

  • Raz, N. (2000). Aging of the brain and its impact on cognitive performance: Integration of structural and functional findings. In F. I. M. Craik & T. A. Salthouse (Eds.), The handbook of aging and cognition (2nd ed., pp. 1–90). Mahwah: Lawrence Erlbaum Associates Publishers.

    Google Scholar 

  • Schmitter-Edgecombe, M., & Wright, M. J. (2003). Content memory and temporal order memory for performed activities after severe closed-head injury. Journal of Clinical and Experimental Neuropsychology, 25, 933–948. doi:10.1076/jcen.25.7.933.16493.

    Article  PubMed  Google Scholar 

  • Schmitter-Edgecombe, M., & Wright, M. J. (2004). Event-based prospective memory following severe closed-head injury. Neuropsychology, 18, 353–361. doi:10.1037/0894-4105.18.2.353.

    Article  PubMed  Google Scholar 

  • Schmitter-Edgecombe, M., Marks, W., & Fahy, J. F. (1993). Semantic priming after severe closed head trauma: automatic and attentional processes. Neuropsychology, 7, 136–148. doi:10.1037/0894-4105.7.2.136.

    Article  Google Scholar 

  • Schmitter-Edgecombe, M., Marks, W., Wright, M. J., & Ventura, M. (2004). Retrieval inhibition in directed forgetting following severe closed-head injury. Neuropsychology, 18, 104–114. doi:10.1037/0894-4105.18.1.104.

    Article  PubMed  Google Scholar 

  • Shattuck, D. W., & Leahy, R. M. (2002). BrainSuite: an automated cortical surface identification tool. Medical Image Analysis, 6, 129–142. doi:10.1007/978-3-540-40889-4_6.

    Article  PubMed  Google Scholar 

  • Smith, A. (1991). Symbol digit modalities test. Los Angeles, CA: Western Psychological Services.

  • Squire, L. R. (1980). Specifying the defect in human amnesia: storage, retrieval, and semantics. Neuropsychology, 18, 369–372. doi:10.1016/0028-3932(80)90134-7.

    Article  CAS  Google Scholar 

  • Squire, L. R. (1994). Memory and forgetting: Long-term and gradual changes in memory storage. In O. Sporns & G. Tononi (Eds.), Selectionism and the brain (pp. 243–269). San Diego: Academic.

    Chapter  Google Scholar 

  • Squire, L. R., & Zola, S. M. (1998). Episodic memory, semantic memory, and amnesia. Hippocampus, 8, 205–211.

    Article  PubMed  CAS  Google Scholar 

  • Storey, J. D. (2002). A direct approach to false discovery rates. Journal of the Royal Statistical Society, 64, 479–498.

    Article  Google Scholar 

  • Stuss, D. T., & Gow, C. A. (1992). Frontal dysfunction after traumatic brain injury. Neuropsychiatry, Neuropsychology, Behavior & Neurology, 5, 272–282.

    Google Scholar 

  • Takaoka, M., Tabuse, H., Kumura, E., Nakajima, S., Tsuzuki, T., Nakamura, K., Okada, A., & Sugimoto, H. (2002). Semi-quantitative analysis of corpus callosum injury using magnetic resonance imaging indicates clinical severity in patients with diffuse axonal injury. Journal of Neurology, Neurosurgery & Psychiatry, 73, 289–293. doi:10.1136/jnnp.73.3.289.

    Article  CAS  Google Scholar 

  • Vakil, E. (2005). The effect of moderate to severe traumatic brain injury (TBI) on different aspects of memory: a selective review. Journal of Clinical and Experimental Neuropsychology, 27, 977–1021. doi:10.1080/13803390490919245.

    Article  PubMed  Google Scholar 

  • Vespa, P., McArthur, D., Alger, J., O’Phelan, K., Glenn, T., Bergsneider, B., & Hovda, D. A. (2004). Regional heterogeneity of brain metabolism using cerebral microdialysis: concordance with magnetic resonance spectroscopy and positron emission tomography. Brain Pathology, 14, 210–214.

    Article  PubMed  Google Scholar 

  • Vespa, P., Bergsneider, M., Hattori, N., Wu, H. M., Huang, S. C., Martin, N. A., & Hovda, D. A. (2005). Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. Journal of Cerebral Blood Flow and Metabolism, 25, 763–774. doi:10.1038/sj.jcbfm.9600073.

    Article  PubMed  CAS  Google Scholar 

  • Vespa, P. M., Miller, C., McArthur, D., Eliseo, M., Etchepare, M., Hirt, D., & Hovda, D. A. (2007). Non-convulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis. Critical Care Medicine, 35, 2830–2836. doi:10.1097/01.CCM.0000295667.66853.BC.

    Article  PubMed  Google Scholar 

  • Wallesch, C., Curio, N., Kutz, S., Jost, S., Bartels, C., & Synowitz, H. (2001). Outcome after mild-to-moderate blunt head injury: effects of focal lesions and diffuse axonal injury. Brain Injury, 15, 401–412. doi:10.1080/02699050116886.

    Article  PubMed  CAS  Google Scholar 

  • Williamson, D. J. G., Scott, J. G., & Adams, R. L. (1996). Traumatic brain injury. In R. L. Adams, O. A. Parsons, J. L. Culbertson, & S. J. Nixon (Eds.), Neuropsychology for clinical practice: etiology, assessment, and treatment of common neurological disorders (pp. 9–64). Washington, DC: American Psychological Association.

    Chapter  Google Scholar 

  • Wilson, J. T. L., Hadley, D. M., Wiedmann, K. D., & Teasdale, G. M. (1995). Neuropsychological consequences of two patterns of brain damage shown by MRI in survivors of severe head injury. Journal of Neurology, Neurosurgery, and Psychiatry, 59, 328–331. doi:10.1136/jnnp.59.3.328.

    Article  PubMed  CAS  Google Scholar 

  • Wright, M. J., & Schmitter-Edgecombe, M. (2011). The impact of verbal memory encoding and consolidation deficits during recovery from moderate-to-severe traumatic brain injury. The Journal of Head Trauma Rehabilitation, 26, 182–191. doi:10.1097/HTR.0b013e318218dcf9.

    Article  PubMed  Google Scholar 

  • Wright, M. J., Woo, E., Schmitter-Edgecombe, M., Hinkin, C. H., Miller, E. N., & Gooding, A. L. (2009). The Item-Specific Deficit Approach (ISDA) to evaluating verbal memory dysfunction: rationale, psychometrics, and application. Journal of Clinical and Experimental Neuropsychology, 31, 790–802. doi:10.1080/13803390802508918.

    Article  PubMed  Google Scholar 

  • Wright, M. J., Schmitter-Edgecombe, M., & Woo, E. (2010). Verbal memory impairment in severe closed-head injury: the role of encoding and consolidation. Journal of Clinical and Experimental Neuropsychology, 32, 728–736. doi:10.1080/13803390903512652.

    Article  PubMed  Google Scholar 

  • Xu, Y., McArthur, D. L., Alger, J. R., Etchepare, M., Hovda, D. A., Glenn, T. C., & Vespa, P. M. (2010). Early nonischemic oxidative metabolic dysfunction leads to chronic brain atrophy in traumatic brain injury. Journal of Cerebral Blood Flow and Metabolism, 30, 883–894. doi:10.1038/jcbfm.2009.263.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by NS049471, NS02089, P01-NS058489 and the California State Neurotrauma Initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew J. Wright.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, M.J., McArthur, D.L., Alger, J.R. et al. Early metabolic crisis-related brain atrophy and cognition in traumatic brain injury. Brain Imaging and Behavior 7, 307–315 (2013). https://doi.org/10.1007/s11682-013-9231-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-013-9231-6

Keywords

Navigation