Brain Imaging and Behavior

, Volume 7, Issue 3, pp 293–299 | Cite as

Brain correlates of pro-social personality traits: a voxel-based morphometry study

  • Joana F. Coutinho
  • Adriana Sampaio
  • Miguel Ferreira
  • José M. Soares
  • Oscar F. Gonçalves
Original Research


Of the five personality dimensions described by the Big Five Personality Model (Costa and McCrae 1992), Extraversion and Agreeableness are the traits most commonly associated with a pro-social orientation. In this study we tested whether a pro-social orientation, as expressed in terms of Extraversion and Agreeableness, is associated with a specific grey matter phenotype. Fifty-two healthy participants underwent magnetic resonance imaging (MRI) and completed the NEO-Five Factor Inventory (NEO-FFI), a self-report measure of the Big Five personality traits. Voxel-based morphometry (VBM) was used to investigate the correlation between brain structure and the personality traits of Agreeableness and Extraversion. We found that Extraversion was negatively correlated with grey matter density in the middle frontal and orbitofrontal gyri while Agreeableness was negatively correlated with grey matter density in the inferior parietal, middle occipital and posterior cingulate gyri. No positive correlations were found. These results suggest that pro-social personality traits seem to be associated with decreases in grey matter density in more frontal regions for Extraversion, and more posterior regions for Agreeableness.


Extraversion Agreeableness Structural MRI Voxel-based morphometry 



This research was funded by the Portuguese Foundation for Science and Technology (FCT): PIC/IC/83290/2007, which is supported by FEDER (POFC – COMPETE), and postdoctoral grant number: SFRH/BPD/75014/2010.

The authors acknowledge Jaime Rocha for discussions on neuroimaging.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Adolphs, R., Tranel, D., Damasio, H., & Damasio, A. (1994). Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature, 372, 669–672.PubMedCrossRefGoogle Scholar
  2. Amodio, D. M., & Frith, C. D. (2006). Meeting of minds: the medial frontal cortex and social cognition. Nature Reviews Neuroscience, 7, 268–277.PubMedCrossRefGoogle Scholar
  3. Ashburner, J. (2007). A fast diffeomorphic image registration algorithm. NeuroImage, 38(1), 95–113.PubMedCrossRefGoogle Scholar
  4. Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry—the methods. NeuroImage, 11(6), 805–821.PubMedCrossRefGoogle Scholar
  5. Ashburner, J., & Friston, K. J. (2009). Computing average shaped tissue probability templates. NeuroImage, 45(2), 333–334.PubMedCrossRefGoogle Scholar
  6. Barrós-Loscertales, A., Meseguer, V., Sanjuán, A., Belloch, V., Parcet, M., Torrubia, R., et al. (2006). Striatum gray matter reduction in males with an overactive behavioral activation system. European Journal of Neuroscience, 24, 2071–2074.PubMedCrossRefGoogle Scholar
  7. Costa, P. T., & McCrae, R. R. (1995). Domains and facets: hierarchical personality assessment using the Revised NEO Personality Inventory. Journal of Personality Assessment, 64, 21–50.PubMedCrossRefGoogle Scholar
  8. Costa, P. T., Jr., & McRae, R. R. (1992). Revised NEO Personality Inventory (NEO-PI-R) and NEO Five-Factor Inventory (NEO-FFI) professional manual. Odessa: Psychological Assessment Resources, Inc.Google Scholar
  9. Cremers, H., van Tol, M. J., Roelofs, K., Aleman, A., Zitman, F. G., van Buchem, M. A., et al. (2011). Extraversion is linked to volume of the orbitofrontal cortex and amygdala. PLoS One, 6(12), e28421. doi: 10.1371/journal.pone.0028421.PubMedCrossRefGoogle Scholar
  10. Demaree, H. A., Everhart, D. E., Youngstrom, E. A., & Harrison, D. W. (2005). Brain later-alization of emotional processing: historical roots and a future incorporating “dominance”. Behavioral and Cognitive Neuroscience Reviews, 4, 3–20.PubMedCrossRefGoogle Scholar
  11. Depue, R. A., & Collins, P. F. (1999). Neurobiology of the structure of personality: dopamine, facilitation of incentive motivation, and extraversion. The Behavioral and Brain Sciences, 22, 491–569.PubMedGoogle Scholar
  12. DeYoung, C. G., Hirsh, J. B., Shane, M. S., Papademetris, X., Rajeevan, N., & Gray, J. R. (2010). Testing predictions from personality neuroscience. Psychological Science, 21(6), 820.PubMedCrossRefGoogle Scholar
  13. Egan, V., Deary, I., & Austin, E. (2000). The NEO-FFI: emerging british norms and an item-level analysis suggest N, A and C are more reliable than O and E. Personality and Individual Differences, 29, 907–920.CrossRefGoogle Scholar
  14. Forsman, L. J., de Manzano, O., Karabanov, A., Madison, G., & Ullén, F. (2012). Differences in regional brain volume related to the extraversion–introversion dimension—a voxel based morphometry study. Neuroscience Research, 72(1), 59–67.PubMedCrossRefGoogle Scholar
  15. Garavan, H., Ross, T. J., & Stein, E. A. (1999). Right hemispheric dominance of inhibitory control: an event-related functional MRI study. Proceedings of the National Academy of Sciences of the United States of America, 96, 8301–8306.PubMedCrossRefGoogle Scholar
  16. Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N. A., Friston, K. J., & Frackowiak, R. S. J. (2001). A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage, 14, 21–36.PubMedCrossRefGoogle Scholar
  17. Gusnard, D. A., Akbudak, E., Shulman, G. L., & Raichle, M. E. (2001). Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain functioning. Proceedings of the National Academy of Sciences of the United States of America, 98(7), 4259–4264.PubMedCrossRefGoogle Scholar
  18. Hooker, C., Verosky, S., Germine, L., Knight, R., & D’Esposito, M. (2010). Neural activity during social signal perception correlates with self-reported empathy. Brain Research, 1308, 100–113.PubMedCrossRefGoogle Scholar
  19. Johnson, D. L., Wiebe, J. S., Gold, S. M., Andreasen, N. C., Hichwa, R. D., Watkins, G. L., et al. (1999). Cerebral blood flow and personality: a positron emission tomography study. The American Journal of Psychiatry, 156(2), 252–257.PubMedGoogle Scholar
  20. Kanwisher, N., McDermott, J., & Chun, M. (1997). The fusiform face area: a module in human extrastriate cortex specialized for face perception. The Journal of Neuroscience, 17(11), 4302–4311.PubMedGoogle Scholar
  21. Manga, D., Ramos, F., & Móran, C. (2004). The Spanish norms of the NEO Five-Factor Inventory: new data and analysis for its improvement. International Journal of Psychology and Psychological Therapy, 4(3), 639–648.Google Scholar
  22. McCrae, R. R., & Costa, P. T. (1990). Personality in adulthood. New York: Guilford Press.Google Scholar
  23. Miettunen, J., Veijola, J., Lauronen, E., Kantojärvi, L., & Joukamaa, M. (2007). Sex differences in Cloninger’s temperament dimensions—a meta-analysis. Comprehensive Psychiatry, 48, 161–169.PubMedCrossRefGoogle Scholar
  24. Milad, M. R., & Rauch, S. L. (2007). The role of the orbitofrontal cortex in anxiety disorders. Annals of the New York Academy of Sciences, 1121, 546–561.PubMedCrossRefGoogle Scholar
  25. Omura, K., Todd Constable, R., & Canli, T. (2005). Amygdala gray matter concentration is associated with extraversion and neuroticism. NeuroReport, 16, 1905–1908.PubMedCrossRefGoogle Scholar
  26. Rademacher, L., Krach, S., Kohls, G., Irmak, A., Gründer, G., & Spreckelmeyer, K. (2010). Dissociation of neural networks for anticipation and consumption of monetary and social rewards. NeuroImage, 49, 3276–3285.PubMedCrossRefGoogle Scholar
  27. Rauch, S. L., Milad, M. R., Orr, S. P., Quinn, B. T., Fischl, B., & Pitman, R. K. (2005). Orbitofrontal thickness, retention of fear extinction, and extraversion. NeuroReport, 16, 1909–1912.PubMedCrossRefGoogle Scholar
  28. Reiss, A. L., Abrams, M. T., Singer, H. S., Ross, J. L., & Denckla, M. B. (1996). Brain development, gender and IQ in children. A volumetric imaging study. Brain, 119, 1763–1774.PubMedCrossRefGoogle Scholar
  29. Rorden, C., & Brett, M. (2000). Stereotaxic display of brain lesions. Behavioral Neurology, 12(4), 191–200.PubMedGoogle Scholar
  30. Samson, D., Apperly, I., & Humphreys, G. (2004). Left temporoparietal junction is necessary for representing someone else’s belief. Nature Neuroscience, 7, 499–500.PubMedCrossRefGoogle Scholar
  31. Saxe, R., & Powell, L. J. (2006). It’s the thought that counts: specific brain regions for one component of theory of mind. Psychological Science, 17, 692–699.PubMedCrossRefGoogle Scholar
  32. Sowell, E. R., Thompson, P. M., Holmes, C. J., Jernigan, T. L., & Toga, A. W. (1999). In vivo evidence for post-adolescent brain maturation in frontal and striatal regions. Nature Neuroscience, 2, 859–861.PubMedCrossRefGoogle Scholar
  33. Sowell, E. R., Delis, D., Stiles, J., & Jernigan, T. L. (2001). Improved memory functioning and frontal lobe maturation between childhood and adolescence: a structural MRI study. Journal of International Neuropsychological Society, 7, 312–322.CrossRefGoogle Scholar
  34. Sowell, E. R., Thompson, P. M., Leonard, C. M., Welcome, S. E., Kan, E., & Toga, A. W. (2004). Longitudinal mapping of cortical thickness and brain growth in normal children. The Journal of Neuroscience, 24(38), 8223–8231.PubMedCrossRefGoogle Scholar
  35. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage, 15(1), 273–289.PubMedCrossRefGoogle Scholar
  36. Volkow, N. D., Tomasi, D., Wang, G. J., Fowler, J. S., Telang, F., Goldstein, R. Z., et al. (2011). Positive emotionality is associated with baseline metabolism in orbitofrontal cortex and in regions of the default network. Molecular Psychiatry, 1–8.Google Scholar
  37. Wright, C. I., Williams, D., Feczko, E., Barrett, L. F., Dickerson, B. C., Schwartz, C. E., et al. (2006). Neuroanatomical correlates of extraversion and neuroticism. Cerebral Cortex, 16(12), 1809–1819.PubMedCrossRefGoogle Scholar
  38. Wright, C. I., Feczko, E., Dickerson, B., & Williams, D. (2007). Neuroanatomical correlates of personality in the elderly. NeuroImage, 35, 263–272.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Joana F. Coutinho
    • 1
  • Adriana Sampaio
    • 1
  • Miguel Ferreira
    • 1
  • José M. Soares
    • 2
    • 3
  • Oscar F. Gonçalves
    • 4
  1. 1.Neuropsychophysiology Lab, CIPsi, School of PsychologyUniversity of MinhoBragaPortugal
  2. 2.Life and Health Science Research Institute (ICVS), School of Health SciencesUniversity of MinhoBragaPortugal
  3. 3.ICVS/3B’s- PT Government Associate LaboratoryBraga/GuimarãesPortugal
  4. 4.Neuropsychophysiology Lab, CIPsi, School of PsychologyUniversity of Minho, Campus de GualtarBragaPortugal

Personalised recommendations