Brain Imaging and Behavior

, Volume 6, Issue 4, pp 502–516

Development and assessment of a composite score for memory in the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

  • Paul K. Crane
  • Adam Carle
  • Laura E. Gibbons
  • Philip Insel
  • R. Scott Mackin
  • Alden Gross
  • Richard N. Jones
  • Shubhabrata Mukherjee
  • S. McKay Curtis
  • Danielle Harvey
  • Michael Weiner
  • Dan Mungas
  • for the Alzheimer’s Disease Neuroimaging Initiative
ADNI: Friday Harbor 2011 Workshop SPECIAL ISSUE

Abstract

We sought to develop and evaluate a composite memory score from the neuropsychological battery used in the Alzheimer’s Disease (AD) Neuroimaging Initiative (ADNI). We used modern psychometric approaches to analyze longitudinal Rey Auditory Verbal Learning Test (RAVLT, 2 versions), AD Assessment Schedule - Cognition (ADAS-Cog, 3 versions), Mini-Mental State Examination (MMSE), and Logical Memory data to develop ADNI-Mem, a composite memory score. We compared RAVLT and ADAS-Cog versions, and compared ADNI-Mem to RAVLT recall sum scores, four ADAS-Cog-derived scores, the MMSE, and the Clinical Dementia Rating Sum of Boxes. We evaluated rates of decline in normal cognition, mild cognitive impairment (MCI), and AD, ability to predict conversion from MCI to AD, strength of association with selected imaging parameters, and ability to differentiate rates of decline between participants with and without AD cerebrospinal fluid (CSF) signatures. The second version of the RAVLT was harder than the first. The ADAS-Cog versions were of similar difficulty. ADNI-Mem was slightly better at detecting change than total RAVLT recall scores. It was as good as or better than all of the other scores at predicting conversion from MCI to AD. It was associated with all our selected imaging parameters for people with MCI and AD. Participants with MCI with an AD CSF signature had somewhat more rapid decline than did those without. This paper illustrates appropriate methods for addressing the different versions of word lists, and demonstrates the additional power to be gleaned with a psychometrically sound composite memory score.

Keywords

Memory psychometrics longitudinal analysis cognition hippocampus 

Supplementary material

11682_2012_9186_MOESM1_ESM.pdf (33 kb)
Appendix Fig. 1Scatter plot of baseline memory single factor and bi-factor scores, stratified by diagnostic group (PDF 32 kb)
11682_2012_9186_MOESM2_ESM.pdf (46 kb)
Appendix Table 1Recoding of scores with more than 10 categories for ADNI-Mem. (PDF 46 kb)
11682_2012_9186_MOESM3_ESM.pdf (37 kb)
Appendix Table 2Factor loadings for the two versions of the RAVLT (PDF 37 kb)
11682_2012_9186_MOESM4_ESM.pdf (38 kb)
Appendix Table 3Factor loadings for the three versions of the ADAS-Cog (PDF 38 kb)

References

  1. Crane, P. K., Narasimhalu, K., Gibbons, L. E., Mungas, D. M., Haneuse, S., Larson, E. B., et al. (2008). Item response theory facilitated cocalibrating cognitive tests and reduced bias in estimated rates of decline. Journal of Clinical Epidemiology, 61(10), 1018–1027 e1019.Google Scholar
  2. De Meyer, G., Shapiro, F., Vanderstichele, H., Vanmechelen, E., Engelborghs, S., De Deyn, P. P., et al. (2010). Diagnosis-independent Alzheimer disease biomarker signature in cognitively normal elderly people. Archives of Neurology, 67(8), 949–956. doi:10.1001/archneurol.2010.179.PubMedCrossRefGoogle Scholar
  3. Fjell, A. M., Walhovd, K. B., Amlien, I., Bjornerud, A., Reinvang, I., Gjerstad, L., et al. (2008). Morphometric changes in the episodic memory network and tau pathologic features correlate with memory performance in patients with mild cognitive impairment. [Research Support, Non-U.S. Gov’t]. AJNR. American Journal of Neuroradiology, 29(6), 1183–1189. doi:10.3174/ajnr.A1059.PubMedCrossRefGoogle Scholar
  4. Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189–198.PubMedCrossRefGoogle Scholar
  5. Jack, C. R., Jr., Bernstein, M. A., Borowski, B. J., Gunter, J. L., Fox, N. C., Thompson, P. M., et al. (2010a). Update on the magnetic resonance imaging core of the Alzheimer’s disease neuroimaging initiative. Alzheimers Dement, 6(3), 212–220. doi:10.1016/j.jalz.2010.03.004.CrossRefGoogle Scholar
  6. Jack, C. R., Jr., Knopman, D. S., Jagust, W. J., Shaw, L. M., Aisen, P. S., Weiner, M. W., et al. (2010b). Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurology, 9(1), 119–128.CrossRefGoogle Scholar
  7. Jack, C. R., Jr., Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G., Harvey, D., et al. (2008). The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods. J Magn Reson Imaging, 27(4), 685-691. doi:10.1002/jmri.21049.Google Scholar
  8. Llano, D. A., Laforet, G., & Devanarayan, V. (2011). Derivation of a new ADAS-cog composite using tree-based multivariate analysis: prediction of conversion from mild cognitive impairment to Alzheimer disease. Alzheimer Disease and Associated Disorders, 25(1), 73–84.PubMedCrossRefGoogle Scholar
  9. McDonald, R. P. (1999). Test theory: a unified treatment. Mahwah: Erlbaum.Google Scholar
  10. McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E. M. (1984). Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology, 34(7), 939–944.PubMedCrossRefGoogle Scholar
  11. Millsap, R. E. (2011). Statistical approaches to measurement invariance: Routledge.Google Scholar
  12. Mohs, R. C., Knopman, D., Petersen, R. C., Ferris, S. H., Ernesto, C., Grundman, M., et al. (1997). Development of cognitive instruments for use in clinical trials of antidementia drugs: additions to the Alzheimer’s Disease Assessment Scale that broaden its scope. The Alzheimer’s Disease Cooperative Study. Alzheimer Disease and Associated Disorders, 11(Suppl 2), S13–21.PubMedCrossRefGoogle Scholar
  13. Morris, J. C. (1993). The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology, 43(11), 2412–2414.PubMedCrossRefGoogle Scholar
  14. Mungas, D., & Reed, B. R. (2000). Application of item response theory for development of a global functioning measure of dementia with linear measurement properties. Statistics in Medicine, 19(11–12), 1631–1644.PubMedCrossRefGoogle Scholar
  15. Murphy, E. A., Holland, D., Donohue, M., McEvoy, L. K., Hagler, D. J., Jr., Dale, A. M., et al. (2010). Six-month atrophy in MTL structures is associated with subsequent memory decline in elderly controls. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]. NeuroImage, 53(4), 1310–1317. doi:10.1016/j.neuroimage.2010.07.016.PubMedCrossRefGoogle Scholar
  16. Muthén, L., & Muthén, B. (2006). Mplus users guide. Version 4.1 ed. Los Angeles: Muthen and Muthen.Google Scholar
  17. Reeve, B. B., Hays, R. D., Bjorner, J. B., Cook, K. F., Crane, P. K., Teresi, J. A., et al. (2007). Psychometric evaluation and calibration of health-related quality of life item banks: plans for the Patient-Reported Outcomes Measurement Information System (PROMIS). Med Care, 45(5 Suppl 1), S22–31.PubMedCrossRefGoogle Scholar
  18. Reise, S. P., Morizot, J., & Hays, R. D. (2007). The role of the bifactor model in resolving dimensionality issues in health outcomes measures. Quality of life research: an international journal of quality of life aspects of treatment, care and rehabilitation, 16 Suppl 1, 19–31.Google Scholar
  19. Reise, S. P., Widaman, K. F., & Pugh, R. H. (1993). Confirmatory factor analysis and item response theory: two approaches for exploring measurement invariance. Psychological Bulletin, 114(3), 552–66.PubMedCrossRefGoogle Scholar
  20. Rey, A. (1964). L’examen clinique en psychologie. Paris: Presses Universitaires de France.Google Scholar
  21. Van Petten, C., Plante, E., Davidson, P. S., Kuo, T. Y., Bajuscak, L., & Glisky, E. L. (2004). Memory and executive function in older adults: relationships with temporal and prefrontal gray matter volumes and white matter hyperintensities. [Clinical Trial Research Support, U.S. Gov’t, P.H.S.]. Neuropsychologia, 42(10), 1313–1335. doi:10.1016/j.neuropsychologia.2004.02.009.PubMedCrossRefGoogle Scholar
  22. Walhovd, K. B., Fjell, A. M., Amlien, I., Grambaite, R., Stenset, V., Bjornerud, A., et al. (2009). Multimodal imaging in mild cognitive impairment: metabolism, morphometry and diffusion of the temporal-parietal memory network. NeuroImage, 45(1), 215–223. doi:10.1016/j.neuroimage.2008.10.053.PubMedCrossRefGoogle Scholar
  23. Wechsler, D. (1987). WMS-R: Wechsler Memory Scale—Revised manual. NY: Psychological Corporation / HBJ.Google Scholar
  24. Wouters, H., van Gool, W. A., Schmand, B., & Lindeboom, R. (2008). Revising the ADAS-cog for a more accurate assessment of cognitive impairment. Alzheimer Disease and Associated Disorders, 22(3), 236–244.PubMedCrossRefGoogle Scholar
  25. Yonelinas, A. P., Widaman, K., Mungas, D., Reed, B., Weiner, M. W., & Chui, H. C. (2007). Memory in the aging brain: doubly dissociating the contribution of the hippocampus and entorhinal cortex. Hippocampus, 17(11), 1134–1140. doi:10.1002/hipo.20341.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Paul K. Crane
    • 1
  • Adam Carle
    • 2
  • Laura E. Gibbons
    • 1
  • Philip Insel
    • 3
  • R. Scott Mackin
    • 3
  • Alden Gross
    • 4
  • Richard N. Jones
    • 4
  • Shubhabrata Mukherjee
    • 1
  • S. McKay Curtis
    • 1
  • Danielle Harvey
    • 5
  • Michael Weiner
    • 3
  • Dan Mungas
    • 6
  • for the Alzheimer’s Disease Neuroimaging Initiative
  1. 1.University of WashingtonSeattleUSA
  2. 2.University of Cincinnati School of Medicine, Cincinnati Children’s Hospital Medical Center, and University of Cincinnati College of Arts and SciencesCincinnatiUSA
  3. 3.Center for Imaging of Neurodegenerative Diseases (CIND)San Francisco VA Medical CenterSan FranciscoUSA
  4. 4.Department of PsychiatryInstitute for Aging ResearchBostonUSA
  5. 5.Division of Biostatistics, Department of Public Health SciencesUniversity of California at DavisDavisUSA
  6. 6.Department of NeurologyUniversity of California at DavisSacramentoUSA

Personalised recommendations