Abstract
Identifying effective behavioral treatments to improve memory in persons with learning and memory impairment is a primary goal for neurorehabilitation researchers. Memory deficits are the most common cognitive symptom in multiple sclerosis (MS), and hold negative professional and personal consequences for people who are often in the prime of their lives when diagnosed. A 10-session behavioral treatment, the modified Story Memory Technique (mSMT), was studied in a randomized, placebo-controlled clinical trial. Behavioral improvements and increased fMRI activation were shown after treatment. Here, connectivity within the neural networks underlying memory function was examined with resting-state functional connectivity (RSFC) in a subset of participants from the clinical trial. We hypothesized that the treatment would result in increased integrity of connections within two primary memory networks of the brain, the hippocampal memory network, and the default network (DN). Seeds were placed in left and right hippocampus, and the posterior cingulate cortex. Increased connectivity was found between left hippocampus and cortical regions specifically involved in memory for visual imagery, as well as among critical hubs of the DN. These results represent the first evidence for efficacy of a behavioral intervention to impact the integrity of neural networks subserving memory functions in persons with MS.
Similar content being viewed by others
References
Benedict, R. H., Ramasamy, D., Munschauer, F., Weinstock-Guttman, B., & Zivadinov, R. (2009). Memory impairment in multiple sclerosis: correlation with deep grey matter and mesial temporal atrophy. Journal of Neurology, Neurosurgery, and Psychiatry, 80(2), 201–206. doi:10.1136/jnnp.2008.148403.
Bird, C. M., Capponi, C., King, J. A., Doeller, C. F., & Burgess, N. (2010). Establishing the boundaries: the hippocampal contribution to imagining scenes. Journal of Neuroscience, 30(35), 11688–11695. doi:10.1523/JNEUROSCI.0723-10.2010.
Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34(4), 537–541.
Biswal, B. B., Mennes, M., Zuo, X. N., Gohel, S., Kelly, C., Smith, S. M., et al. (2010). Toward discovery science of human brain function. Proceedings of the National Academy of Sciences of the United States of America, 107(10), 4734–4739. doi:10.1073/pnas.0911855107.
Bonavita, S., Gallo, A., Sacco, R., Corte, M. D., Bisecco, A., Docimo, R., et al. (2011). Distributed changes in default-mode resting-state connectivity in multiple sclerosis. Multiple Sclerosis, 17(4), 411–422. doi:10.1177/1352458510394609.
Buckner, R. L., Andrews-Hanna, J. R., & Schacter, D. L. (2008). The brain’s default network: anatomy, function, and relevance to disease. Annals of the New York Academy of Sciences, 1124, 1–38. doi:10.1196/annals.1440.011.
Chiaravalloti, N. D., & DeLuca, J. (2008). Cognitive impairment in multiple sclerosis. Lancet Neurology, 7(12), 1139–1151. doi:10.1016/S1474-4422(08)70259-X.
Chiaravalloti, N. D., DeLuca, J., Moore, N. B., & Ricker, J. H. (2005). Treating learning impairments improves memory performance in multiple sclerosis: a randomized clinical trial. Multiple Sclerosis, 11(1), 58–68.
Chiaravalloti, N. D., Balzano, J., Moore, N. B., & DeLuca, J. (2009). The Open-Trial Selective Reminding Test (OT-SRT) as a tool for the assessment of learning and memory. Clinical Neuropsychology, 23(2), 231–254. doi:10.1080/13854040802121158.
Chiaravalloti, N. D., Wylie, G., Leavitt, V., & Deluca, J. (2012). Increased cerebral activation after behavioral treatment for memory deficits in MS. Journal of Neurology. doi:10.1007/s00415-011-6353-x.
Cox, R. W. (1996). AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29(3), 162–173.
Delis, D. C., Kramer, J. H., Kaplin, E., & Ober, B. A. (2000). California Verbal Learning Test—Second Edition (CVLT–II). San Antonio, TX.
Delis, D. C., Kramer, J. H., Kaplan, E., & Holdnack, J. (2004). Reliability and validity of the Delis-Kaplan Executive Function System: an update. Journal of International Neuropsychological Society, 10(2), 301–303. doi:10.1017/S1355617704102191.
DeLuca, J., & Nocentini, U. (2011). Neuropsychological, medical and rehabilitative management of persons with multiple sclerosis. Neurorehabilitation, 29(3), 197–219. doi:10.3233/NRE-2011-0695.
Filippi, M., Riccitelli, G., Mattioli, F., Capra, R., Stampatori, C., Pagani, E., et al. (2012). Multiple Sclerosis : Effects of Cognitive Rehabilitation on Structural and Functional MR Imaging Measures—An Explorative Study. Radiology, 262(3):932–940.
Flavia, M., Stampatori, C., Zanotti, D., Parrinello, G., & Capra, R. (2010). Efficacy and specificity of intensive cognitive rehabilitation of attention and executive functions in multiple sclerosis. Journal of Neurological Sciences, 288(1–2), 101–105. doi:10.1016/j.jns.2009.09.024.
Fox, M. D., & Raichle, M. E. (2007). Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nature Reviews Neuroscience, 8(9), 700–711. doi:10.1038/nrn2201.
Fransson, P., & Marrelec, G. (2008). The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: Evidence from a partial correlation network analysis. NeuroImage, 42(3), 1178–1184. doi:10.1016/j.neuroimage.2008.05.059.
Greicius, M. D., Krasnow, B., Reiss, A. L., & Menon, V. (2003). Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences of the United States of America, 100(1), 253–258.
Greicius, M. D., Supekar, K., Menon, V., & Dougherty, R. F. (2009). Resting-state functional connectivity reflects structural connectivity in the default mode network. Cerebral Cortex, 19(1), 72–78. doi:10.1093/cercor/bhn059.
Hillary, F. G., Slocomb, J., Hills, E. C., Fitzpatrick, N. M., Medaglia, J. D., Wang, J., et al. (2011). Changes in resting connectivity during recovery from severe traumatic brain injury. International Journal of Psychophysiology, 82(1), 115–123. doi:10.1016/j.ijpsycho.2011.03.011.
Jonsson, A., Korfitzen, E. M., Heltberg, A., Ravnborg, M. H., & Byskov-Ottosen, E. (1993). Effects of neuropsychological treatment in patients with multiple sclerosis. Acta Neurologica Scandinavica, 88(6), 394–400.
McDonald, W. I., Compston, A., Edan, G., Goodkin, D., Hartung, H. P., Lublin, F. D., et al. (2001). Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Annals of Neurology, 50(1), 121–127.
Oldfield, R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia, 9(1), 97–113.
Rocca, M. A., Valsasina, P., Absinta, M., Riccitelli, G., Rodegher, M. E., Misci, P., et al. (2010). Default-mode network dysfunction and cognitive impairment in progressive MS. Neurology, 74(16), 1252–1259. doi:10.1212/WNL.0b013e3181d9ed91.
Roosendaal, S. D., Hulst, H. E., Vrenken, H., Feenstra, H. E., Castelijns, J. A., Pouwels, P. J., et al. (2010a). Structural and functional hippocampal changes in multiple sclerosis patients with intact memory function. Radiology, 255(2), 595–604. doi:10.1148/radiol.10091433.
Roosendaal, S. D., Schoonheim, M. M., Hulst, H. E., Sanz-Arigita, E. J., Smith, S. M., Geurts, J. J., et al. (2010b). Resting state networks change in clinically isolated syndrome. Brain, 133(Pt 6), 1612–1621. doi:10.1093/brain/awq058.
Sicotte, N. L., Kern, K. C., Giesser, B. S., Arshanapalli, A., Schultz, A., Montag, M., et al. (2008). Regional hippocampal atrophy in multiple sclerosis. Brain, 131(Pt 4), 1134–1141. doi:10.1093/brain/awn030.
Smith, A. (1982). Symbol digit modalities test manual. Los Angeles: Western Psychological Services.
Smith, S. M., Jenkinson, M., Woolrich, M. W., Beckmann, C. F., Behrens, T. E., Johansen-Berg, H., et al. (2004). Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage, 23(Suppl 1), S208–219. doi:10.1016/j.neuroimage.2004.07.051.
Solari, A., Motta, A., Mendozzi, L., Pucci, E., Forni, M., Mancardi, G., et al. (2004). Computer-aided retraining of memory and attention in people with multiple sclerosis: a randomized, double-blind controlled trial. Journal of Neurological Sciences, 222(1–2), 99–104. doi:10.1016/j.jns.2004.04.027.
Strauss, E., Sherman, E. M. S., & Spreen, O. (2006). A compendium of neuropsychological tests: Administration, norms, and commentary. Oxford: Oxford University Press.
Sumowski, J. F., Wylie, G., Leavitt, V. M., Chiaravalloti, N., & DeLuca, J. (2012). Default network activity is a sensitive and specific biomarker of memory in MS. Multiple Sclerosis. doi:10.1177/1352458512448267.
Sweet, L. H., Jerskey, B. A., & Aloia, M. S. (2010). Default network response to a working memory challenge after withdrawal of continuous positive airway pressure treatment for obstructive sleep apnea. Brain Imaging and Behavior, 4(2), 155–163. doi:10.1007/s11682-010-9095-y.
Tomasi, D., & Volkow, N. D. (2011). Functional connectivity hubs in the human brain. NeuroImage, 57(3), 908–917. doi:10.1016/j.neuroimage.2011.05.024.
Voss, M. W., Prakash, R. S., Erickson, K. I., Basak, C., Chaddock, L., Kim, J. S., et al. (2010). Plasticity of brain networks in a randomized intervention trial of exercise training in older adults. Frontiers in Aging Neuroscience, 2. doi:10.3389/fnagi.2010.00032.
Acknowledgments
This work was funded by National Institutes of Health grants (grant number R01 HD045798 and HD045798-S to N.D.C.); National Multiple Sclerosis Society (training grant-MB0003 to J.D.) and the Kessler Foundation.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Leavitt, V.M., Wylie, G.R., Girgis, P.A. et al. Increased functional connectivity within memory networks following memory rehabilitation in multiple sclerosis. Brain Imaging and Behavior 8, 394–402 (2014). https://doi.org/10.1007/s11682-012-9183-2
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11682-012-9183-2