Brain Imaging and Behavior

, Volume 6, Issue 4, pp 610–620

Beta amyloid, tau, neuroimaging, and cognition: sequence modeling of biomarkers for Alzheimer’s Disease

  • S. Duke Han
  • Jonathan Gruhl
  • Laurel Beckett
  • Hiroko H. Dodge
  • Nikki H. Stricker
  • Sarah Farias
  • Dan Mungas
  • for the Alzheimer’s Disease Neuroimaging Initiative
ADNI: Friday Harbor 2011 Workshop SPECIAL ISSUE

Abstract

Alzheimer’s disease (AD) is associated with a cascade of pathological events involving formation of amyloid-based neuritic plaques and tau-based neurofibrillary tangles, changes in brain structure and function, and eventually, cognitive impairment and functional disability. The precise sequence of when each of these disease markers becomes abnormal is not yet clearly understood. The present study systematically tested the relationship between classes of biomarkers according to a proposed model of temporal sequence by Jack et al. (Lancet Neurology 9:119–128, 2010). We examined temporal relations among four classes of biomarkers: CSF Aβ, CSF tau, neuroimaging variables (hippocampal volume, ventricular volume, FDG PET), and cognitive variables (memory and executive function). Random effects modeling of longitudinal data obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) was used to test hypotheses that putative earlier markers of AD predicted change in later markers, and that intervening markers reduced effects of earlier on later markers. Specifically, we hypothesized that CSF tau would explain CSF Aβ’s relation to neuroimaging and cognitive variables, and neuroimaging variables would explain tau’s relation to cognitive variables. Consistent with hypotheses, results indicated that CSF Aβ effects on cognition change were substantially attenuated by CSF tau and measures of brain structure and function, and CSF tau effects on cognitive change were attenuated by neuroimaging variables. Contrary to hypotheses, CSF Aβ and CSF tau were observed to have independent effects on neuroimaging and CSF tau had a direct effect on baseline cognition independent of brain structure and function. These results have implications for clarifying the temporal sequence of AD changes and corresponding biomarkers.

Keywords

Beta amyloid Tau Memory Executive Functions Neuroimaging 

References

  1. Alzheimer’s Association. (2009). 2009 Alzheimer’s Disease facts and figures. Alzheimer’s and Google Scholar
  2. Blom, G. (1958). Statistical estimates and transformed beta variables. New York: John Wiley & Sons, Inc.Google Scholar
  3. Braak, H., Braak, E., & Bohl, J. (1993). Staging of Alzheimer-related cortical destruction. European Neurology, 33, 403–408.PubMedCrossRefGoogle Scholar
  4. Buerger, K., Ewers, M., Pirttila, T., et al. (2006). CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer’s disease. Brain, 129, 3035–3041.PubMedCrossRefGoogle Scholar
  5. Butterfield, D. A., Castegna, A., Lauderback, C. M., & Drake, J. (2002). Evidence that amyloid beta-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiology of Aging, 23, 655–664.PubMedCrossRefGoogle Scholar
  6. Cole, D. A., & Maxwell, S. E. (2003). Testing mediational models with longitudinal data: questions and tips in the use of structural equation modeling. Journal of Abnormal Psychology, 112(4), 558–577.PubMedCrossRefGoogle Scholar
  7. Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. NeuroImage, 9(2), 179–194.PubMedCrossRefGoogle Scholar
  8. De Leon, M. J., Convit, A., Wolf, O. T., Tarshish, C. Y., DeSanti, S., Rusinek, H., Tsui, W., Kandil, E., Scherer, A. J., Roche, A., Imossi, A., Thorn, E., Bobinski, M., Caraos, C., Lesbre, P., Schlyer, D., Poirier, J., Reisberg, B., & Fowler, J. (2001). Prediction of cognitive decline in normal elderly subjects with 2-[18F]fluoro-2-deoxy-d-glucose/positron-emission tomography (FDG/PET). PNAS, 98, 10966–10971.PubMedCrossRefGoogle Scholar
  9. Diggle, P. J., Heagerty, P., Liang, K. Y., & Zeger, S. L. (2002). The analysis of longitudinal data (2nd ed.). Oxford: Oxford University Press.Google Scholar
  10. Dowling, N.M., Tomazewski Farias, S., Reed, B.R., Sonnen, J.A., Strauss, M.E., Schneider, J.A., Bennett, D.A., & Mungas, D. (2010). Neuropathological associates of multiple cognitive functions in two community-based cohorts of older adults. JINS. Epub ahead of print.Google Scholar
  11. Fischl, B., Salat, D. H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., et al. (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341–355.PubMedCrossRefGoogle Scholar
  12. Fischl, B., Salat, D. H., van der Kouwe, A. J., Makris, N., Segonne, F., Quinn, B. T., et al. (2004). Sequence-independent segmentation of magnetic resonance images. NeuroImage, 23(Suppl 1), S69–S84.PubMedCrossRefGoogle Scholar
  13. Fischl, B., Sereno, M. I., & Dale, A. M. (1999). Cortical surface-based analysis. II: inflation, flattening, and a surface-based coordinate system. NeuroImage, 9(2), 195–207.PubMedCrossRefGoogle Scholar
  14. Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segonne, F., Salat, D. H., et al. (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14(1), 11–22.PubMedCrossRefGoogle Scholar
  15. Habeck, C., Fostern, N. L., Pernecsky, R., Kurz, A., Alexopoulos, P., Koeppe, R. A., & Stern, Y. (2008). Multivariate and univariate neuroimaging biomarkers of Alzheimer’s disease. NeuroImage, 40(4), 1503–1515.PubMedCrossRefGoogle Scholar
  16. Hampel, H., Goernitz, A., & Buerger, K. (2003). Advances in the development of biomarkers for Alzheimer’s disease: from CSF total tau and AB1-42 proteins to phosphorylated tau protein. Brain Research Bulletin, 61, 243–253.PubMedCrossRefGoogle Scholar
  17. Hebert, L. E., Scherr, P. A., Bienias, J. L., Bennett, D. A., & Evans, D. A. (2003). Alzheimer disease in the U.S. population: prevalence estimates using the 2000 census. Archives of Neurology, 60(8), 1119–1122.PubMedCrossRefGoogle Scholar
  18. Howieson, D. B., Carlson, N. E., Moore, M. M., Wasserman, D., Abendroth, C. D., Payne-Murphy, J., & Kaye, J. A. (2008). Trajectory of mild cognitive impairment onset. Journal of the International Neuropsychological Society, 14(2), 192–198.PubMedCrossRefGoogle Scholar
  19. Ivnik, R. J., Malec, J. F., Tangalos, E. G., Petersen, R. C., Kokmen, E., & Kurland, L. T. (1990). The Auditory-Verbal Learning Test (AVLT): norms for ages 55 years and older. Psychological Assessment: A Journal of Consulting and Clinical Psychology, 2(3), 304–312.Google Scholar
  20. Jack, C. R., Knopman, D. S., Jagust, W. J., Shaw, L. M., Aisen, P. S., Weiner, M. W., Petersen, R. C., & Trojanowski, J. Q. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurology, 9, 119–128.PubMedCrossRefGoogle Scholar
  21. Jack, C. R., Shiung, M. M., Gunter, J. L., et al. (2004). Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology, 62, 591–600.PubMedCrossRefGoogle Scholar
  22. Jacqmin-Gadda, H., Commenges, D., & Dartigues, J. F. (2006). Random change point model for joint modeling of cognitive decline and dementia. Biometrics, 62(1), 254–260.PubMedCrossRefGoogle Scholar
  23. Jagust, W. J., Bandy, D., Chen, K., Foster, N. L., Landau, S. M., Mathis, C. A., Price, J. C., Reiman, E. M., Skovronsky, D., Koeppe, R. A., & Investigators, A. D. N. I. (2010). The ADNI PET Core. Alzheimer’s & Dementia, 6, 221–229.CrossRefGoogle Scholar
  24. Johnson, D. K., Storandt, M., Morris, J. C., & Galvin, J. E. (2009). Longitudinal study of the transition from healthy aging to Alzheimer disease. Archives of Neurology, 66(10), 1254–1259.PubMedCrossRefGoogle Scholar
  25. Kester, M. I., van der Vlies, A. E., Blankenstein, M. A., Pijnenburg, Y. A. L., van Elk, E. J., Scheltens, P., & van der Flier, W. M. (2009). CSF biomarkers predict rate of cognitive decline in Alzheimer’s disease. Neurology, 73, 1353–1358.PubMedCrossRefGoogle Scholar
  26. MacKinnon, D. P., Fairchild, A. J., & Fritz, M. S. (2007). Mediation analysis. Annual Review of Psychology, 58, 593–614.PubMedCrossRefGoogle Scholar
  27. Maxwell, S. E., & Cole, D. A. (2007). Bias in cross-sectional analyses of longitudinal mediation. Psychological Methods, 12(1), 23–44.PubMedCrossRefGoogle Scholar
  28. Mungas, D., Beckett, L., Harvey, D., Tomaszewski Farias, S., Reed, B., Carmichael, O., & Decarli, C. (2010). Heterogeneity of cognitive trajectories in diverse older persons. Psychology and Aging, 25(3), 606–619.PubMedCrossRefGoogle Scholar
  29. Negash, S., Bennett, D. A., Wilson, R. S., Schneider, J. A., & Arnold, S. E. (2011). Cognition and neuropathology in aging: multidimensional perspectives from the rush religious orders study and rush memory and aging project. Current Alzheimer’s Research, 8, 336–340.CrossRefGoogle Scholar
  30. Oddo, S., Vasilevko, V., Caccamo, A., Kitazawa, M., Cribbs, D. H., & LaFerla, F. M. (2006). Reduction of the soluable Abeta and tau, but not soluable Abeta alone, ameliorates cognitive decline in transgenic mice with plaques and tangles. Journal of Biological chemistry, 281, 39413–39423.Google Scholar
  31. Petersen, R. C., Aisen, P. S., Beckett, L. A., Donohue, M. C., Gamst, A. C., Harvey, D. J., Jack, C. R., Jagust, W. J., Shaw, L. M., Toga, A. W., Trojanowski, J. Q., & Weiner, M. W. (2010). Alzheimer’s Disease Neuroimaging Initiative (ADNI): clinical characterization. Neurology, 74, 201–209.PubMedCrossRefGoogle Scholar
  32. Reiman, E. M., Chen, K., Alexander, G. E., Caselli, R. J., Bandy, D., Osborne, D., & Hardy, J. (2005). Correlations between apolipoprotein E epsilon4 gene dose and brain-imaging measurements of regional hypometabolism. Proceedings of the National Academy of Sciences of the United States of America, 102(23), 8299–8302.PubMedCrossRefGoogle Scholar
  33. Savva, G. M., Wharton, S. B., Ince, P. G., Forster, G., Matthews, F. E., & Brayne, C. (2009). Age, neuropathology, and dementia. The New England Journal of Medicine, 360, 2302–2309.PubMedCrossRefGoogle Scholar
  34. Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., & Phelps, C. H. (2011). Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging and the Alzheimer’s Association workgroup. Alzheimer’s & Dementia, 7(3), 280–292.CrossRefGoogle Scholar
  35. Strozyk, D., Blennow, K., White, L. R., & Launer, L. J. (2003). CSF AB42 levels correlate with amyloid-neuropathology in a population-based autopsy study. Neurology, 60, 652–656.PubMedCrossRefGoogle Scholar
  36. Vemuri, P., Wiste, H. J., Weigand, S. D., Shaw, L. M., Trojanowski, J. Q., Weiner, M. W., Knopman, D. S., Petersen, R. C., Jack, C. R., & On behalf of the Alzheimer’s Disease Neuroimaging Initiative. (2009). MRI and CSF biomarkers in normal, MCI, and AD subjects: diagnostic discrimination and cognitive correlations. Neurology, 73, 287–293.PubMedCrossRefGoogle Scholar
  37. Verbeke, G., & Molenberghs, G. (2000). Linear mixed models for longitudinal data. New York: Springer.Google Scholar
  38. Wilson, R. S., Beckett, L. A., Barnes, L. L., Schneider, J. A., Bach, J., Evans, D. A., & Bennett, D. A. (2002). Individual differences in rates of change in cognitive abilities of older persons. Psychology and Aging, 17(2), 179–193.PubMedCrossRefGoogle Scholar
  39. Yu, B., & Ghosh, P. (2010). Joint modeling for cognitive trajectory and risk of dementia in the presence of death. Biometrics, 66(1), 294–300.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • S. Duke Han
    • 1
    • 2
  • Jonathan Gruhl
    • 3
  • Laurel Beckett
    • 4
  • Hiroko H. Dodge
    • 5
  • Nikki H. Stricker
    • 6
    • 7
  • Sarah Farias
    • 8
  • Dan Mungas
    • 8
  • for the Alzheimer’s Disease Neuroimaging Initiative
  1. 1.Department of Behavioral SciencesRush University Medical CenterChicagoUSA
  2. 2.Rush Alzheimer’s Disease CenterRush University Medical CenterChicagoUSA
  3. 3.Department of StatisticsUniversity of WashingtonSeattleUSA
  4. 4.Department of Public Health SciencesUniversity of California DavisDavisUSA
  5. 5.Department of NeurologyOregon Health and Sciences UniversityPortlandUSA
  6. 6.Psychology ServiceVA Boston Healthcare SystemBostonUSA
  7. 7.Department of PsychiatryBoston University School of MedicineBostonUSA
  8. 8.Department of NeurologyUniversity of California DavisDavisUSA

Personalised recommendations