Brain Imaging and Behavior

, Volume 6, Issue 4, pp 517–527

A composite score for executive functioning, validated in Alzheimer’s Disease Neuroimaging Initiative (ADNI) participants with baseline mild cognitive impairment

  • Laura E. Gibbons
  • Adam C. Carle
  • R. Scott Mackin
  • Danielle Harvey
  • Shubhabrata Mukherjee
  • Philip Insel
  • S. McKay Curtis
  • Dan Mungas
  • Paul K. Crane
  • for the Alzheimer’s Disease Neuroimaging Initiative
ADNI: Friday Harbor 2011 Workshop SPECIAL ISSUE

Abstract

The Alzheimer’s Disease Neuroimaging Initiative (ADNI) measures abilities broadly related to executive function (EF), including WAIS-R Digit Symbol Substitution, Digit Span Backwards, Trails A and B, Category Fluency, and Clock Drawing. This study investigates whether a composite executive function measure based on these multiple indicators has better psychometric characteristics than the widely used individual components. We applied item response theory methods to 800 ADNI participants to derive an EF composite score (ADNI-EF) from the above measures. We then compared ADNI-EF with component measures in 390 longitudinally-followed participants with mild cognitive impairment (MCI) with respect to: (1) Ability to detect change over time; (2) Ability to predict conversion to dementia; (3) Strength of cross-sectional association with MRI-derived measures of structures involved in frontal systems, and (4) Strength of baseline association with cerebrospinal fluid (CSF) levels of amyloid β1-42, total tau, and phosphorylated tau181P. ADNI-EF showed the greatest change over time, followed closely by Category Fluency. ADNI-EF needed a 40 % smaller sample size to detect change. ADNI-EF was the strongest predictor of AD conversion. ADNI-EF was the only measure significantly associated with all the MRI regions, though other measures were more strongly associated in a few of the regions. ADNI-EF was associated with all the CSF measures. ADNI-EF appears to be a useful composite measure of EF in MCI, as good as or better than any of its composite parts. This study demonstrates an approach to developing a psychometrically sophisticated composite score from commonly-used tests.

Keywords

Executive function Mild cognitive impairment Item response theory Composite scores 

Supplementary material

11682_2012_9176_MOESM1_ESM.pdf (29 kb)
Online Appendix 1(PDF 28 kb)
11682_2012_9176_MOESM2_ESM.pdf (23 kb)
Online Appendix 2(PDF 22 kb)
11682_2012_9176_MOESM3_ESM.pdf (82 kb)
Online Appendix 3(PDF 82 kb)

References

  1. Alvarez, J. A., & Emory, E. (2006). Executive function and the frontal lobes: a meta-analytic review. Neuropsychology Review, 16(1), 17–42. doi:10.1007/s11065-006-9002-x.PubMedCrossRefGoogle Scholar
  2. Baker, F. B., & Kim, S.-H. (2004). Item response theory: Parameter estimation techniques (2nd ed.). New York: CRC Press.Google Scholar
  3. Cahn-Weiner, D. A., Boyle, P. A., & Malloy, P. F. (2002). Tests of executive function predict instrumental activities of daily living in community-dwelling older individuals. Applied Neuropsychology, 9(3), 187–191. doi:10.1207/S15324826AN0903_8.PubMedCrossRefGoogle Scholar
  4. Cardenas, V. A., Chao, L. L., Studholme, C., Yaffe, K., Miller, B. L., Madison, C., et al. (2011). Brain atrophy associated with baseline and longitudinal measures of cognition. Neurobiology of Aging, 32(4), 572–580. doi:10.1016/j.neurobiolaging.2009.04.011.PubMedCrossRefGoogle Scholar
  5. Carmichael, O., Mungas, D., Beckett, L., Harvey, D., Tomaszewski Farias, S., Reed, B., et al. (2010). MRI predictors of cognitive change in a diverse and carefully characterized elderly population. Neurobiology of Aging. doi:10.1016/j.neurobiolaging.2010.01.021.
  6. Carmichael, O., Schwarz, C., Drucker, D., Fletcher, E., Harvey, D., Beckett, L., et al. (2010). Longitudinal changes in white matter disease and cognition in the first year of the Alzheimer disease neuroimaging initiative. Archives of Neurology, 67(11), 1370–1378. doi:10.1001/archneurol.2010.284.PubMedCrossRefGoogle Scholar
  7. Chang, Y. L., Jacobson, M. W., Fennema-Notestine, C., Hagler, D. J., Jr., Jennings, R. G., Dale, A. M., et al. (2010). Level of executive function influences verbal memory in amnestic mild cognitive impairment and predicts prefrontal and posterior cingulate thickness. Cerebral Cortex, 20(6), 1305–1313. doi:10.1093/cercor/bhp192.PubMedCrossRefGoogle Scholar
  8. Crane, P. K., Narasimhalu, K., Gibbons, L. E., Pedraza, O., Mehta, K. M., Tang, Y., et al. (2008). Composite scores for executive function items: demographic heterogeneity and relationships with quantitative magnetic resonance imaging. Journal of the International Neuropsychological Society: JINS, 14(5), 746–59. doi:10.1017/S1355617708081162.PubMedCrossRefGoogle Scholar
  9. De Meyer, G., Shapiro, F., Vanderstichele, H., Vanmechelen, E., Engelborghs, S., De Deyn, P. P., et al. (2010). Diagnosis-independent Alzheimer disease biomarker signature in cognitively normal elderly people. Archives of Neurology, 67(8), 949–956. doi:10.1001/archneurol.2010.179.PubMedCrossRefGoogle Scholar
  10. Ewers, M., Walsh, C., Trojanowski, J. Q., Shaw, L. M., Petersen, R. C., Jack, C. R., Jr., et al. (2010). Prediction of conversion from mild cognitive impairment to Alzheimer’s disease dementia based upon biomarkers and neuropsychological test performance. Neurobiology of Aging. doi:10.1016/j.neurobiolaging.2010.10.019.
  11. Farias, S. T., Mungas, D., Reed, B. R., Harvey, D., & DeCarli, C. (2009). Progression of mild cognitive impairment to dementia in clinic- vs community-based cohorts. Archives of Neurology, 66(9), 1151–1157. doi:10.1001/archneurol.2009.106.PubMedCrossRefGoogle Scholar
  12. Farias, S. T., Mungas, D., Reed, B., Carmichael, O., Beckett, L., Harvey, D., et al. (2011). Maximal brain size remains an important predictor of cognition in old age, independent of current brain pathology. Neurobiology of Aging. doi:10.1016/j.neurobiolaging.2011.03.017.
  13. Gomar, J. J., Bobes-Bascaran, M. T., Conejero-Goldberg, C., Davies, P., & Goldberg, T. E. (2011). Utility of combinations of biomarkers, cognitive markers, and risk factors to predict conversion from mild cognitive impairment to Alzheimer disease in patients in the Alzheimer’s disease neuroimaging initiative. Archives of General Psychiatry, 68(9), 961–969. doi:10.1001/archgenpsychiatry.2011.96.PubMedCrossRefGoogle Scholar
  14. Goodglass, H., & Kaplan, D. (1983). The assessment of aphasia and related disorders (2nd ed.). Philadelphia: Lea & Febiger.Google Scholar
  15. Grambaite, R., Selnes, P., Reinvang, I., Aarsland, D., Hessen, E., Gjerstad, L., et al. (2011). Executive Dysfunction in Mild Cognitive Impairment is Associated with Changes in Frontal and Cingulate White Matter Tracts. Journal of Alzheimer’s Disease: JAD. doi:10.3233/JAD-2011-110290.
  16. Jack, C. R., Jr., Bernstein, M. A., Fox, N. C., Thompson, P., Alexander, G., Harvey, D., et al. (2008). The Alzheimer's Disease Neuroimaging Initiative (ADNI): MRI methods. J Magn Reson Imaging, 27(4), 685–691. doi:10.1002/jmri.21049.Google Scholar
  17. Jack, C. R., Jr., Knopman, D. S., Jagust, W. J., Shaw, L. M., Aisen, P. S., Weiner, M. W., et al. (2010). Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurology, 9(1), 119–128. doi:10.1016/S1474-4422(09)70299-6.PubMedCrossRefGoogle Scholar
  18. Li, Y., Bolt, D. M., & Fu, J. (2006). A comparison of alternative models for testlets. Applied Psychological Measurement, 30(1), 3–21.CrossRefGoogle Scholar
  19. Llano, D. A., Laforet, G., & Devanarayan, V. (2011). Derivation of a new ADAS-cog composite using tree-based multivariate analysis: prediction of conversion from mild cognitive impairment to Alzheimer disease. Alzheimer Disease and Associated Disorders, 25(1), 73–84. doi:10.1097/WAD.0b013e3181f5b8d8.PubMedCrossRefGoogle Scholar
  20. Marra, C., Ferraccioli, M., Vita, M. G., Quaranta, D., & Gainotti, G. (2011). Patterns of cognitive decline and rates of conversion to dementia in patients with degenerative and vascular forms of MCI. Current Alzheimer Research, 8(1), 24–31.PubMedCrossRefGoogle Scholar
  21. McDonald, R. P. (1999). Test theory: a unified treatment. Mahwah: Lawrence Erlbaum.Google Scholar
  22. McDonald, C. R., Gharapetian, L., McEvoy, L. K., Fennema-Notestine, C., Hagler, D. J., Jr., Holland, D., et al. (2010). Relationship between regional atrophy rates and cognitive decline in mild cognitive impairment. Neurobiology of Aging. doi:10.1016/j.neurobiolaging.2010.03.015.
  23. Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: a latent variable analysis. Cognit Psychol, 41(1), 49–100.PubMedCrossRefGoogle Scholar
  24. Mohs, R. C., Knopman, D., Petersen, R. C., Ferris, S. H., Ernesto, C., Grundman, M., et al. (1997). Development of cognitive instruments for use in clinical trials of antidementia drugs: additions to the Alzheimer’s Disease Assessment Scale that broaden its scope. The Alzheimer’s Disease Cooperative Study. Alzheimer Disease and Associated Disorders, 11(Suppl 2), S13–21.PubMedCrossRefGoogle Scholar
  25. Morris, J. C., Heyman, A., Mohs, R. C., Hughes, J. P., van Belle, G., Fillenbaum, G., et al. (1989). The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer’s disease. Neurology, 39(9), 1159–1165.PubMedCrossRefGoogle Scholar
  26. Mungas, D., Harvey, D., Reed, B. R., Jagust, W. J., DeCarli, C., Beckett, L., et al. (2005). Longitudinal volumetric MRI change and rate of cognitive decline. Neurology, 65(4), 565–571. doi:10.1212/01.wnl.0000172913.88973.0d.PubMedCrossRefGoogle Scholar
  27. Mungas, D., Beckett, L., Harvey, D., Farias, S. T., Reed, B., Carmichael, O., et al. (2010). Heterogeneity of cognitive trajectories in diverse older persons. Psychology and Aging, 25(3), 606–619. doi:10.1037/a0019502.PubMedCrossRefGoogle Scholar
  28. Muthén, L. K., & Muthén, B. O. (1998–2007). Mplus: statistical analysis with latent variables. (5.1 ed.). Los Angeles, CA: Muthén & Muthén.Google Scholar
  29. Nordlund, A., Rolstad, S., Klang, O., Lind, K., Pedersen, M., Blennow, K., et al. (2008). Episodic memory and speed/attention deficits are associated with Alzheimer-typical CSF abnormalities in MCI. Journal of the International Neuropsychological Society: JINS, 14(4), 582–590. doi:10.1017/S135561770808079X.PubMedCrossRefGoogle Scholar
  30. Nordlund, A., Rolstad, S., Gothlin, M., Edman, A., Hansen, S., & Wallin, A. (2010). Cognitive profiles of incipient dementia in the Goteborg MCI study. Dementia and Geriatric Cognitive Disorders, 30(5), 403–410. doi:10.1159/000321352.PubMedCrossRefGoogle Scholar
  31. Parks, C. M., Iosif, A. M., Farias, S., Reed, B., Mungas, D., & DeCarli, C. (2011). Executive function mediates effects of white matter hyperintensities on episodic memory. Neuropsychologia, 49(10), 2817–2824. doi:10.1016/j.neuropsychologia.2011.06.003.PubMedCrossRefGoogle Scholar
  32. Petersen, R. C., Aisen, P. S., Beckett, L. A., Donohue, M. C., Gamst, A. C., Harvey, D. J., et al. (2010). Alzheimer’s Disease Neuroimaging Initiative (ADNI): clinical characterization. Neurology, 74(3), 201–209. doi:10.1212/WNL.0b013e3181cb3e25.PubMedCrossRefGoogle Scholar
  33. Reeve, B. B., Hays, R. D., Bjorner, J. B., Cook, K. F., Crane, P. K., Teresi, J. A., et al. (2007). Psychometric evaluation and calibration of health-related quality of life item banks: plans for the Patient-Reported Outcomes Measurement Information System (PROMIS). Medical Care, 45(5 Suppl 1), S22–31.PubMedCrossRefGoogle Scholar
  34. Reitan, R. M., & Wolfson, D. (1985). The Halstead-Reitan neuropsychological test battery. Tucson: Neuropsychology Press.Google Scholar
  35. Rolstad, S., Berg, A. I., Bjerke, M., Blennow, K., Johansson, B., Zetterberg, H., et al. (2011). Amyloid-beta is associated with cognitive impairment in healthy elderly and subjective cognitive impairment. Journal of Alzheimer’s Disease: JAD, 26(1), 135–142. doi:10.3233/JAD-2011-110038.PubMedGoogle Scholar
  36. Salthouse, T. A. (2005). Relations between cognitive abilities and measures of executive functioning. Neuropsychology, 19(4), 532–545.PubMedCrossRefGoogle Scholar
  37. Schwarz, C., Fletcher, E., DeCarli, C., & Carmichael, O. (2009). Fully-automated white matter hyperintensity detection with anatomical prior knowledge and without FLAIR. Information Processing in Medical Imaging, 21, 239–251.PubMedCrossRefGoogle Scholar
  38. Shaw, L. M., Vanderstichele, H., Knapik-Czajka, M., Clark, C. M., Aisen, P. S., Petersen, R. C., et al. (2009). Cerebrospinal fluid biomarker signature in Alzheimer’s disease neuroimaging initiative subjects. Annals of Neurology, 65(4), 403–413. doi:10.1002/ana.21610.PubMedCrossRefGoogle Scholar
  39. Smith, E. E., Salat, D. H., Jeng, J., McCreary, C. R., Fischl, B., Schmahmann, J. D., et al. (2011). Correlations between MRI white matter lesion location and executive function and episodic memory. Neurology, 76(17), 1492–1499. doi:10.1212/WNL.0b013e318217e7c8.PubMedCrossRefGoogle Scholar
  40. StataCorp. (2011). Stata statistical software: release 12. College Station: StataCorp LP.Google Scholar
  41. Tabert, M. H., Manly, J. J., Liu, X., Pelton, G. H., Rosenblum, S., Jacobs, M., et al. (2006). Neuropsychological prediction of conversion to Alzheimer disease in patients with mild cognitive impairment. Archives of General Psychiatry, 63(8), 916–924. doi:10.1001/archpsyc.63.8.916.PubMedCrossRefGoogle Scholar
  42. Trojanowski, J. Q., Vandeerstichele, H., Korecka, M., Clark, C. M., Aisen, P. S., Petersen, R. C., et al. (2010). Update on the biomarker core of the Alzheimer’s Disease Neuroimaging Initiative subjects. Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 6(3), 230–238. doi:10.1016/j.jalz.2010.03.008.CrossRefGoogle Scholar
  43. Wainer, H., Bradlow, E. T., & Wang, X. (2007). Testlet response theory and its applications. NY: Cambridge UP.CrossRefGoogle Scholar
  44. Wechsler, D. (1981). Wechsler adult intelligence scale-revised. San Antonio: Psychological Corporation.Google Scholar
  45. Wechsler, D. (1987). Wechsler memory scale-revised. San Antonio: Psychological Corporation.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Laura E. Gibbons
    • 1
  • Adam C. Carle
    • 2
  • R. Scott Mackin
    • 3
  • Danielle Harvey
    • 4
  • Shubhabrata Mukherjee
    • 1
  • Philip Insel
    • 3
  • S. McKay Curtis
    • 1
  • Dan Mungas
    • 5
  • Paul K. Crane
    • 1
  • for the Alzheimer’s Disease Neuroimaging Initiative
  1. 1.Harborview Medical CenterUniversity of WashingtonSeattleUSA
  2. 2.Cincinnati Children’s Hospital Medical CenterUniversity of Cincinnati School of Medicine and University of Cincinnati College of Arts and SciencesCincinnatiUSA
  3. 3.Center for Imaging of Neurodegenerative Diseases (CIND)San Francisco VA Medical CenterSan FranciscoUSA
  4. 4.Division of Biostatistics, Department of Public Health SciencesUniversity of CaliforniaDavisUSA
  5. 5.Department of NeurologyUC Davis Medical CenterSacramentoUSA

Personalised recommendations