Brain Imaging and Behavior

, Volume 6, Issue 2, pp 244–254 | Cite as

Chronic traumatic encephalopathy: neurodegeneration following repetitive concussive and subconcussive brain trauma

  • Christine M. Baugh
  • Julie M. Stamm
  • David O. Riley
  • Brandon E. Gavett
  • Martha E. Shenton
  • Alexander Lin
  • Christopher J. Nowinski
  • Robert C. Cantu
  • Ann C. McKee
  • Robert A. SternEmail author
mTBI Special Issue


Chronic Traumatic Encephalopathy (CTE) is a neurodegenerative disease thought to be caused, at least in part, by repetitive brain trauma, including concussive and subconcussive injuries. It is thought to result in executive dysfunction, memory impairment, depression and suicidality, apathy, poor impulse control, and eventually dementia. Beyond repetitive brain trauma, the risk factors for CTE remain unknown. CTE is neuropathologically characterized by aggregation and accumulation of hyperphosphorylated tau and TDP-43. Recent postmortem findings indicate that CTE may affect a broader population than was initially conceptualized, particularly contact sport athletes and those with a history of military combat. Given the large population that could potentially be affected, CTE may represent an important issue in public health. Although there has been greater public awareness brought to the condition in recent years, there are still many research questions that remain. Thus far, CTE can only be diagnosed post-mortem. Current research efforts are focused on the creation of clinical diagnostic criteria, finding objective biomarkers for CTE, and understanding the additional risk factors and underlying mechanism that causes the disease. This review examines research to date and suggests future directions worthy of exploration.


Chronic traumatic encephalopathy Traumatic brain injury Dementia Concussion Tauopathy Dementia pugilistica 


Beta amyloid


Alzheimer’s disease


Amyotrophic lateral sclerosis


Apolipoprotein E


Amyloid precursor protein


Blood oxygen level dependent




Cerebrospinal fluid


Chronic traumatic encephalopathy


Chronic traumatic enceohalomyelopathy


Diffusion tensor imaging


Event-related potential


Functional magnetic resonance imaging




Frontotemporal dementia


Glial tangle




Microtubule-associated protein tau


Magnetic resonance imaging


Magnetic Resonance Spectroscopy


N-acetyl asparate


Neurofibrilary tangle


Neurophil thread


Post-concussion syndrome


Positron emission tomography


Single photon emission computed tomography


Susceptibility weighted imaging


TAR DNA-binding protein 43


Traumatic brain injury



This work was supported by grants from the National Institutes of Health (P30 AG13846; R01 NS078337), as well as a grant from the National Operating Committee on Standards for Athletic Equipment, and an unrestricted gift from the National Football League.

Conflict of interest

No authors on this paper have conflicts of interest to disclose.


  1. Amen, D. G., Newberg, A., Thatcher, R., Jin, Y., Wu, J., Keator, D., et al. (2011). Impact of playing American professional football on long-term brain function. Journal of Neuropsychiatry and Clinical Neuroscience, 23(1), 98–106.CrossRefGoogle Scholar
  2. Ashwal, S., Holshouser, B. A., Shu, S. K., Simmons, P. L., Perkin, R. M., Tomasi, L. G., et al. (2000). Predictive value of proton magnetic resonance spectroscopy in pediatric closed head injury. Pediatric Neurology, 23(2), 114–125.PubMedCrossRefGoogle Scholar
  3. Ashwal, S., Babikian, T., Gardner-Nichols, J., Freier, M., Tong, K. A., & Holshouser, B. A. (2006). Susceptibility-weighted imaging and proton magnetic resonance spectroscopy in assessment of outcome after pediatric traumatic brain injury. Archives of Physical Medicine and Rehabilitation, 87(12, Supplement), 50–58.CrossRefGoogle Scholar
  4. Blaylock, R. L., & Maroon, J. (2011). Immunoexcitotoxicity as a central mechanism in chronic traumatic encephalopathy-A unifying hypothesis. Surgical Neurology International, 2, 107.PubMedCrossRefGoogle Scholar
  5. Brooks, W. M., Friedman, S. D., & Gasparovic, C. (2001). Magnetic resonance spectroscopy in traumatic brain injury. Journal of Head Trauma Rehabilitation, 16(2), 149–164.PubMedCrossRefGoogle Scholar
  6. Chastain, C. A., Oyoyo, U. E., Zipperman, M., Joo, E., Ashwal, S., Shutter, L. A., et al. (2009). Predicting outcomes of traumatic brain injury by imaging modality and injury distribution. Journal of Neurotrauma, 26(8), 1183–1196.PubMedCrossRefGoogle Scholar
  7. Cimatti, M. (2006). Assessment of metabolic cerebral damage using proton magnetic resonance spectroscopy in mild traumatic brain injury. Journal of Neurosurgical Sciences, 50(4), 83–88.PubMedGoogle Scholar
  8. Colbert, C. A., Holshouser, B. A., Aaen, G. S., Sheridan, C., Oyoyo, U., Kido, D., et al. (2010). Value of cerebral microhemorrhages detected with susceptibility-weighted MR Imaging for prediction of long-term outcome in children with nonaccidental trauma. Radiology, 256(3), 898–905.PubMedCrossRefGoogle Scholar
  9. Corsellis, J. A., Bruton, C. J., & Freeman-Browne, D. (1973). The aftermath of boxing. Psychological Medicine, 3(3), 270–303.PubMedCrossRefGoogle Scholar
  10. Covassin, T., & Elbin, R. J. (2011). The female athlete: the role of gender in the assessment and management of sport-related concussion. Clinics in Sports Medicine, 30, 125–131, x.PubMedCrossRefGoogle Scholar
  11. Crawford, F., Wood, M., Ferguson, S., Mathura, V., Gupta, P., Humphrey, J., et al. (2009). Apolipoprotein E-genotype dependent hippocampal and cortical responses to traumatic brain injury. Neuroscience, 159(4), 1349–1362.PubMedCrossRefGoogle Scholar
  12. Crisco, J. J., Fiore, R., Beckwith, J. G., Chu, J. J., Bronlinson, P. G., Duma, S., et al. (2010). Frequency and location of head impact exposures in individual collegiate football players. Journal of Athletic Training, 45, 549–559.PubMedCrossRefGoogle Scholar
  13. De Meyer, G., Shapiro, F., Vanderstichele, H., et al. (2010). Diagnosis-independent Alzheimer disease biomarker signature in cognitively normal elderly people. Archives of Neurology, 67(8), 949–956.PubMedCrossRefGoogle Scholar
  14. Dick, R. W. (2009). Is there a gender difference in concussion incidence and outcomes? British Journal of Sports Medicine, 43(Suppl 1), i46–i50.PubMedCrossRefGoogle Scholar
  15. Dubois, B., Feldman, H. H., Jacova, C., Cummings, J. L., Dekosky, S. T., Barberger-Gateau, P., et al. (2007). Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurology, 6(8), 734–746.PubMedCrossRefGoogle Scholar
  16. Field, M., Collins, M. W., Lovell, M. R., & Maroon, J. (2003). Does age play a role in recovery from sports related concussion? A comparison of high school and collegiate athletes. Journal of Pediatrics, 142, 546–553.PubMedCrossRefGoogle Scholar
  17. Friedman, G., Froom, P., Sazbon, L., Grinblatt, I., Shochina, M., Tsenter, J., et al. (1999). Apolipoprotein E-epsilon4 genotype predicts a poor outcome in survivors of traumatic brain injury. Neurology, 52(2), 244–248.PubMedCrossRefGoogle Scholar
  18. Galvin, J. E., Price, J. L., Yan, Z., Morris, J. C., & Sheline, Y. I. (2011). Resting bold fMRI differentiates dementia with Lewy bodies vs Alzheimer disease. Neurology, 76(21), 1797–1803.Google Scholar
  19. Gavett, B. E., Stern, R. A., Cantu, R. C., Nowinski, C. J., & McKee, A. C. (2010). Mild traumatic brain injury: a risk factor for neurodegeneration. Alzheimer’s Research and Therapy, 2, 18.PubMedCrossRefGoogle Scholar
  20. Gavett, B. E., Stern, R. A., & McKee, A. C. (2011a). Chronic traumatic encephalopathy: a potential late effect of sport-related concussive and subconcussive head trauma. Clinic in Sports Medicine, 30(1), 179–188.CrossRefGoogle Scholar
  21. Gavett, B. E., Cantu, R. C., Shenton, M., Lin, A. P., Nowinski, C. J., McKee, A. C., Stern, R. A. (2011b). Clinical appraisal of chronic traumatic encephalopathy: current perspectives and future directions. Current Opinion in Neurology, 24(6), 525–531.Google Scholar
  22. Geddes, J. F., Vowles, G. H., Nicoll, J. A., & Revesz, T. (1999). Neuronal cytoskeletal changes are an early consequence of repetitive head injury. Acta Neuropathologica, 98, 171–178.PubMedCrossRefGoogle Scholar
  23. Greenwald, R. M., Gwin, J. T., Chu, J. J., & Crisco, J. J. (2008). Head impact severity measures for evaluating mild traumatic brain injury risk exposure. Neurosurgery, 62, 789–798. discussion, 798.PubMedCrossRefGoogle Scholar
  24. Henry, L. C., Tremblay, S., & Boulanger, Y. (2010). Neurometabolic changes in the acute phase following sports concussions correlate with symptom severity. Journal of Neurotrauma, 27(1), 65–76.PubMedCrossRefGoogle Scholar
  25. Hill, J. M., Bhattacharjee, P. S., & Neumann, D. M. (2007). Apolipoprotein E alleles can contribute to the pathogenesis of numerous clinical conditions including HSV-1 corneal disease. Experimental Eye Research, 84(5), 801–811.PubMedCrossRefGoogle Scholar
  26. Hof, P. R., Knabe, R., Bovier, P., & Bouras, C. (1991). Neuropathological observations in a case of autism presenting with self-injury behavior. Acta Neuropathologica, 82, 321–326.PubMedCrossRefGoogle Scholar
  27. Holshouser, B. A., Tong, K. A., Ashwal, S., & Proton, M. R. (2005). Spectroscopic imaging depicts diffuse axonal injury in children with traumatic brain injury. AJNR American Journal of Neuroradiology, 26(5), 1276–1285.PubMedGoogle Scholar
  28. Immonen, R. J., Kharatishvili, I., Gröhn, H., Pitkänen, A., & Gröhn, O. H. (2009). Quantitative MRI predicts long-term structural and functional outcome after experimental traumatic brain injury. Neuroimage, 45(1), 1–9.PubMedCrossRefGoogle Scholar
  29. Jack, C. R., Jr., Albert, M. S., Knopman, D. S., McKhann, G. M., Sperling, R. A., Carrillo, M. C., et al. (2011). Introduction to the recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s and Dementia, 7(3), 257–262.PubMedCrossRefGoogle Scholar
  30. Jordan, B. D., Relkin, N. R., Ravdin, L. D., Jacobs, A. R., Bennett, A., & Gandy, S. (1997). Apolipoprotein E epsilon4 associated with chronic traumatic brain injury in boxing. JAMA, 278, 136–140.PubMedCrossRefGoogle Scholar
  31. Katzman, R., Galasko, D. R., Saitoh, T., Chen, X., Pay, M. M., Booth, A., et al. (1996). Apolipoprotein-epsilon4 and head trauma: synergistic or additive risks? Neurology, 46(3), 889–891.PubMedGoogle Scholar
  32. Kutner, K. C., Erlanger, D. M., Tsai, J., Jordan, B., & Relkin, N. R. (2000). Lower cognitive performance of older football players possessing apolipoprotein E epsilon4. Neurosurgery, 47, 651–657. discussion 657–658.PubMedGoogle Scholar
  33. Lin, A., Ramadan, S., Box, H., et al. (2010). Neurochemical changes in athletes with chronic traumatic encephalopathy. Chicago: Radiological Society of North America.Google Scholar
  34. Lipton, M. L., Gulko, E., Zimmerman, M. E., Friedman, B. W., Kim, W., Kim, M., Gellella, E., et al. (2009). Diffusion-tensor imaging implicates prefrontal axonal injury in executive function impairment following very mild traumatic brain injury. Radiology, 252(3), 816–824.PubMedCrossRefGoogle Scholar
  35. Liu, A. Y., Maldjian, J. A., Bagley, L. J., Sinson, G. P., & Grossman, R. I. (1999). Traumatic brain injury: diffusion-weighted MR imaging findings. American Journal of Neuroradiology, 20, 1636–1641.PubMedGoogle Scholar
  36. Mann, D. M., Brown, A. M., Prinja, D., Jones, D., & Davies, C. A. (1990). A morphological analysis of senile plaques in the brains of non-demented persons of different ages using sliver, immunocytochemical and lectin histochemical staining techniques. Neuropathology and Applied Neurobiology, 16, 17–25.PubMedCrossRefGoogle Scholar
  37. Martland, H. S. (1928). Punch drunk. JAMA, 91, 1103–1107.CrossRefGoogle Scholar
  38. Masterman, D. L., Mendez, M. F., Fairbanks, L. A., & Cummings, J. L. (1997). Sensitivity, specificity, and positive predictive value of technetium 99-HMPAO SPECT in discriminating Alzheimer’s disease from other dementias. Journal of Geriatric Psychiatry and Neurology, 10(1), 15–21.PubMedGoogle Scholar
  39. McKee, A. C., Cantu, R. C., Nowinski, C. J., Hedley-Whyte, E. T., Gavett, B. E., Budson, A. E., et al. (2009). Chronic traumatic encephalopathy in athletes: progressive tauopathy after repetitive head injury. Journal of Neuropathology and Experimental Neurology, 68(7), 709–735.PubMedCrossRefGoogle Scholar
  40. McKee, A. C., Gavett, B. E., Stern, R. A., Nowinski, C. J., Cantu, R. C., Kowall, N. W., et al. (2010). TDP-43 proteinopathy and motor neuron disease in chronic traumatic encephalopathy. Journal of Neuropathology and Experimental Neurology, 69, 918–929.PubMedCrossRefGoogle Scholar
  41. McKhann, G. M., Knopman, D. S., Chertkow, H., Hyman, B. T., Jack, C. R., Jr., Kawas, C. H., et al. (2011). The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s and Dementia, 7(3), 263–269.PubMedCrossRefGoogle Scholar
  42. Millspaugh, J. A. (1937). Dementia pugilistica. US Naval Medical Bulletin, 35, 297–303.Google Scholar
  43. Omalu, B. I., DeKosky, S. T., Minster, R. L., Kamboh, M. I., Hamilton, R. L., & Wecht, C. H. (2005). Chronic traumatic encephalopathy in a National Football League player. Neurosurgery, 57, 128–134. discussion, 128–134.PubMedCrossRefGoogle Scholar
  44. Omalu, B. I., DeKosky, S. T., Hamilton, R. L., Minster, R. L., Kamboh, M. I., Shakir, A. M., et al. (2006). Chronic traumatic encephalopathy in a national football league player: part II. Neurosurgery, 59, 1086–1092. discussion, 1092–1093.PubMedGoogle Scholar
  45. Omalu, B. I., Fitzsimmons, R. P., Hammers, J., & Bailes, J. (2010). Chronic traumatic encephalopathy in a professional American wrestler. Journal of Forensic Nursing, 6, 130–136.PubMedCrossRefGoogle Scholar
  46. Omalu, B., Bailes, J., Hamilton, R. L., Kamboh, M. I., Hammers, J., Case, M., et al. (2011). Emerging histomorphologic phenotypes of chronic traumatic encephalopathy [CTE] in American athletes. Neurosurgery, 69(1), 173–183. discussion 183.PubMedCrossRefGoogle Scholar
  47. Prabhu, S. P. (2011). The role of neuroimaging in sport-related concussion. Clinics in Sports Medicine, 1, 103–114.CrossRefGoogle Scholar
  48. Pullela, R., Raber, J., Pfankuch, T., Ferriero, D. M., Claus, C. P., Koh, S. E., et al. (2006). Traumatic injury to the immature brain results in progressive neuronal loss, hyperactivity and delayed cognitive impairments. Developmental Neuroscience, 28, 396–409.PubMedCrossRefGoogle Scholar
  49. Roberson, E. D., Scearce-Levie, K., Palop, J. J., Yan, F., Cheng, I. H., Wu, T., et al. (2007). Reducing endogenous tau ameliorates amyloid beta induced deficits in an Alzheimer’s disease mouse model. Science, 316, 750–754.PubMedCrossRefGoogle Scholar
  50. Roberts, G. W., Whitwell, H. L., Acland, P. R., & Bruton, C. J. (1990). Dementia in a punch-drunk wife. Lancet, 335, 918–919.PubMedCrossRefGoogle Scholar
  51. Ross, B. D., Ernst, T., Kreis, R., Haseler, L. J., Bayer, S., Danielsen, E., et al. (1998). 1 H MRS in acute traumatic brain injury. Journal Magnetic Resonance Imaging, 8(4), 829–840.CrossRefGoogle Scholar
  52. Schmidt, M. L., Zhukareva, V., Newell, K. L., Lee, V. M.-Y., & Trojanowski, J. Q. (2001). Tau isoform profile and phosphorylation state in dementia pugilistica recapitulate Alzheimer’s disease. Acta Neuropathologica, 101, 518–524.PubMedGoogle Scholar
  53. Schneider, G. E. (1979). Is it really better to have your brain lesion early? A revision of the “Kennard principle”. Neuropsychologia, 17, 557–583.PubMedCrossRefGoogle Scholar
  54. Seeley, W. W., Crawford, R. K., Zhou, J., Miller, B. L., & Greicius, M. D. (2009). Neurodegenerative diseases target large-scale human brain networks. Neuron, 62(1), 42–52.PubMedCrossRefGoogle Scholar
  55. Shutter, L., Tong, K. A., & Holshouser, B. A. (2004). Proton MRS in acute traumatic brain injury: role for glutamate/glutamine and choline for outcome prediction. Journal of Neurotrauma, 21(12), 1693–1705.PubMedCrossRefGoogle Scholar
  56. Sperling, R. A., Dickerson, B. C., Pihlajamaki, M., Vannini, P., LaViolette, P. S., Vitolo, O. V., et al. (2010). Functional alterations in memory networks in early Alzheimer’s disease. Neuromolecular Medicine, 12(1), 27–43.PubMedCrossRefGoogle Scholar
  57. Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., Craft, S., Fagan, A. M., et al. (2011). Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s and Dementia, 7(3), 280–292.PubMedCrossRefGoogle Scholar
  58. Spiotta, A. M., Shin, J. H., Bartsch, A. J., & Benzel, E. C. (2011). Subconcussive impact in sports: a new era of awareness. World Neurosurgery, 75(2), 175–178.PubMedCrossRefGoogle Scholar
  59. Stern, Y. (2007). Cognitive reserve: Theory and applications. Philadelphia: Taylor & Francis.Google Scholar
  60. Stern, R. A., Riley, D. O., Daneshvar, D. H., Nowinski, C. J., Cantu, R. C., McKee, A. C. (2011a). Long-term consequences of repetitive brain trauma: chronic traumatic encephalopathy. PM&R, 10 Suppl 2, S460–467.Google Scholar
  61. Stern, R. A., Anderson, S., & Gavett, B. (2011b). Executive functioning. In A. E. Budson & N. W. Kowell (Eds.), The handbook of Alzheimer’s disease and other dementias (pp. 369–415). New York: Wiley-Blackwell.CrossRefGoogle Scholar
  62. Talavage, T. M., Nauman, E. A., Breedlove, E. L., Yoruk, U., Dye, A. E., Morigaki, K., Feuer, H., Leverenz, L. J. (2010). Functionally-detected cognitive impairment in high school football players without clinically-diagnosed concussion. Journal of Neurotrauma, [Epub ahead of print.].Google Scholar
  63. Teasdale, G. M., Nicoll, J. A., Murray, G., & Fiddes, M. (1997). Association of Apolipoprotein E polymorphism with outcome after head injury. Lancet, 350, 1069–1071.PubMedCrossRefGoogle Scholar
  64. Tubbs, R. S., Krishnamurthy, S., Verma, K., Shoja, M. M., Loukas, M., Mortazavi, M. M., et al. (2011). Cavum velum, interpositum, cavum septum pellucidum, and cavum vergae: a review. Childs Nervous System, 27, 1927–1930.CrossRefGoogle Scholar
  65. Vagnozzi, R., Signoretti, S., & Tavazzi, B. (2008). Temporal window of metabolic brain vulnerability to concussion: a pilot 1H-magnetic resonance spectroscopic study in concussed athletes-part III. Neurosurgery, 62(6), 1286–1296.PubMedCrossRefGoogle Scholar
  66. Zhou, J., Greicius, M. D., Gennatas, E. D., Growdon, M. E., Jang, E., Jang, J. Y., Rabinovici, G. D., et al. (2010). Divergent network connectivity changes in behavioural variant frontotemporal dementia and Alzheimer’s disease. Brain, 133(5), 1352–1367.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Christine M. Baugh
    • 1
  • Julie M. Stamm
    • 1
  • David O. Riley
    • 1
  • Brandon E. Gavett
    • 2
  • Martha E. Shenton
    • 3
  • Alexander Lin
    • 4
  • Christopher J. Nowinski
    • 1
    • 5
  • Robert C. Cantu
    • 1
    • 5
    • 6
    • 7
  • Ann C. McKee
    • 1
    • 8
    • 9
    • 10
  • Robert A. Stern
    • 1
    • 6
    • 8
    • 10
    Email author
  1. 1.Center for the Study of Traumatic EncephalopathyBoston University School of MedicineBostonUSA
  2. 2.Department of PsychologyUniversity of Colorado at Colorado SpringsColorado SpringsUSA
  3. 3.Psychiatry Neuroimaging Laboratory, Department of PsychiatryBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA
  4. 4.Center for Clinical Spectroscopy, Brigham and Women’s Hospital, Harvard Medical SchoolBostonUSA
  5. 5.Sports Legacy InstituteWalthamUSA
  6. 6.Department of NeurosurgeryBoston University School of MedicineBostonUSA
  7. 7.Neurosurgery Service, the Department of Surgery, and Sports MedicineEmerson HospitalConcordUSA
  8. 8.Department of NeurologyBoston University School of MedicineBostonUSA
  9. 9.Department of PathologyBoston University School of MedicineBostonUSA
  10. 10.Alzheimer’s Disease CenterBoston University School of MedicineBostonUSA

Personalised recommendations