Skip to main content

Advertisement

Log in

Brain region white matter associations with visual selective attention

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

To understand how normal variations in white matter relate to cognition, magnetization transfer imaging ratios (MTR) of a hypothesized neural network were associated with a test of visual selective attention (VST). Healthy adults (N = 16) without abnormal signal on brain scans viewed a version of DeSchepper and Treisman’s test of VST (1996) with two levels of processing (novel shape matching with and without distractors, contingency feedback). A hypothesized neural network and component regions was significantly associated with accuracy and response times when distractors were present, with betas predicting 55% of variance in accuracy, and 59% of response times. MTR for anterior and posterior cingulate, prefrontal region, and thalami comprised a model predicting 55% of accuracy when distractors were present, and the anterior cingulate accounted for the majority of this effect. Prefrontal MTR predicted longer response times which was associated with increased accuracy. Distal neural areas involved in complex, processing-driven tasks (error processing, response selection, and variable response competition and processing load) may be dependent on white matter fibers to connect distal brain regions/nuclei of a macronetwork, including prefrontal executive functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen, J. S., Damasio, H., Grabowski, T. J., Bruss, J., & Zhang, W. (2003). Sexual dimorphism and asymmetries in the gray-white composition of human cerebrum. NeuroImage, 18, 880–894.

    Article  PubMed  Google Scholar 

  • Armstrong, C. L., & Ledakis, G. E. (2002). The significance of magnetization transfer imaging in measuring cognition and white matter damage. Journal of the International Neuropsychological Society, 8, 244.

    Google Scholar 

  • Armstrong, C. L., Hayes, K. M., & Martin, R. (2001). Neurocognitive problems in attention deficit disorder: Alternative concepts and evidence for impairment in inhibition of selective attention. In J. Wasserstein, L. E. Wolf, & F. F. LeFever (Eds.), Adult attention deficit disorder: Brain mechanisms and life outcomes, vol. 931 (pp. 196–215). New York: New York Academy of Sciences.

    Google Scholar 

  • Armstrong, C. L., Traipe, E., Hunter, J. V., Haselgrove, J. C., Ledakis, G. E., Tallent, E. M., et al. (2004). Age-related, hemispheric, and medial/lateral differences in myelin integrity in vivo in the normal adult brain. American Journal of Neuroradiology, 25, 977–984.

    PubMed  Google Scholar 

  • Badgaiyan, D. F., & Harnishfeger, K. K. (1990). The resource construct development: diverse sources of evidence and a theory of inefficient inhibition. Developmental Review, 10, 48–71.

    Article  Google Scholar 

  • Bagley, L., Grossman, R., Galetta, S., Sinson, G., Kotapka, M., & McGowan, J. (1999). Characterization of white matter lesions in multiple sclerosis and traumatic brain injury as revealed by magnetization transfer contour plots. American Journal of Neuroradiology, 20(6), 977–981.

    PubMed  CAS  Google Scholar 

  • Bartzokis, G., Beckson, M., Lu, P. H., Nuechterlein, K. H., Edwards, N., & Mintz, J. (2001). Age-related changes in frontal and temporal lobe volumes in men: a magnetic resonance imaging study. Archives of General Psychiatric, 58(5), 461–465.

    Article  CAS  Google Scholar 

  • Bjorklund, D. F., & Harnishfeger, K. K. (1990). The resources construct in cognitive development: diverse sources of evidence and a theory of inefficient inhibition. Developmental Review, 10, 48–71.

    Article  Google Scholar 

  • Botvinick, M. M., Carter, C. C., Braver, T. S., Barch, D. M., & Cohen, J. D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624–652.

    Article  PubMed  CAS  Google Scholar 

  • Boyle, P. A., Paul, R. H., Moser, D. J., & Cohen, R. A. (2004). Executive impairments predict functional declines in vascular dementia. The Clinical Neuropsychologist, 18(1), 75–82.

    Article  PubMed  Google Scholar 

  • Brazdil, M., Roman, R., Falkenstein, M., Daniel, P., Jurak, P., & Rektor, I. (2002). Error processing: evidence from intracerebral ERP recordings. Experimental Brain Research, 146, 460–466.

    Article  Google Scholar 

  • Breteler, M. M. B., van Amerongen, N. M., van Swieten, J. C., Claus, J. J., Grobbee, D. E., van Gijn, J., et al. (1994). Cognitive correlates of ventricular enlargement and cerebral white matter lesions on magnetic resonance imaging: the Rotterdam study. Stroke, 25(6), 1109–1115.

    Article  PubMed  CAS  Google Scholar 

  • Breteler, M. M. B., van Swieten, J. C., Bots, M. L., Grobbee, D. E., Claus, J. J., van den Hout, J. H. W., et al. (1994). Cerebral white matter lesions, vascular risk factors, and cognitive function in a population based study: the Rotterdam study. Neurology, 44(1246–1252).

    Google Scholar 

  • Bundesen, C., Larsen, A., Kyllingsbaek, S., Paulson, O. B., & Law, I. (2002). Attentional effects in visual pathways: a whole-brain PET study. Experimental Brain Research, 147, 393–406.

    Article  Google Scholar 

  • Carter, C. S., Braver, T. S., Barch, D. M., Botvinick, M. M., Noll, D., & Cohen, J. D. (1998). Anterior cingulate cortex, error detection, and online monitoring of performance. Science, 280, 747–749.

    Article  PubMed  CAS  Google Scholar 

  • Cercignani, M., Bozzali, M., Iannucci, G., Comi, G., & Filippi, M. (2001). Magnetisation transfr ratio and mean diffusivity of normal appearing white and grey matter from patients with multiple sclerosis. Journal of Neurology, Neurosurgery, and Psychiatry, 70(3), 311–317.

    Article  PubMed  CAS  Google Scholar 

  • Charlton, R. A., Barrick, T. R., McIntyre, D. J., Shen, Y., O’Sullivan, M., Howe, F. A., et al. (2006). White matter damage on diffusion tensor imaging correlates with age-related cognitive decline. Neurology, 66(2), 217–222.

    Article  PubMed  CAS  Google Scholar 

  • Chudasama, Y., & Muir, J. L. (2001). Visual attention in the rat: a role for the prelimbic cortex and thalamic nuclei? Behavioral Neuroscience, 115, 417–428.

    Article  PubMed  CAS  Google Scholar 

  • Corbetta, M. (1998). Frontoparietal cortical networks for directing attention and eye to visual locations: identical, independent, or overlapping neural systems? Proceedings of the National Academy of Science, 95, 831–838.

    Article  CAS  Google Scholar 

  • Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. L., & Peterson, S. E. (1991). Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. The Journal of Neuroscience, 11(8), 2383–2402.

    PubMed  CAS  Google Scholar 

  • Damasio, H., & Damasio, A. R. (1989). Lesion analysis in neuropsychology. New York: Oxford University Press.

    Google Scholar 

  • Danckert, J., Ymer, C., Yucel, M., Maruff, P., Kinsella, G., de Graaff, S., et al. (2000). Goal-directed selective attention and response competition monitoriting. Evidence from unilateral parietal and anterior cingulate lesions. Neuropsychology, 14(16–28).

    Google Scholar 

  • DeSchepper, B., & Treisman, A. (1996). Visual memory for novel shapes: implicit coding without attention. Journal of Experimental Psychology. Learning, Memory, and Cognition, 22(1), 27–47.

    Article  PubMed  CAS  Google Scholar 

  • Donchin, E., Graton, G., Dupree, D., & Coles, M. G. H. (1988). After a rash action: Latency and amplitude of the P300 following fast guesses. In G. C. Galbraith, M. L. Kietzman, & E. Donchin (Eds.), Neurophysiology and psychophysiology: Experimental and clinical applications. Hillsdale: Lawrence Erlbaum Associates.

    Google Scholar 

  • Dwyer, M., Bergsland, N., Hussein, S., Durfee, J., Wack, D., & Zivadinov, R. (2009). A sensitive, noise-resistant method for identifying focal demyelination and remyelination in patients with multiple sclerosis via voxel-wise changes in magnetization transfer ratio. Journal of the Neurological Sciences, 282(1–2), 86–95.

    Article  PubMed  Google Scholar 

  • Engelbrecht, V., Rassek, M., Preiss, S., Wald, C., & Modder, U. (1998). Age-dependent changes in magnetization transfer contrast of white matter in the pediatric brain. American Journal of Neuroradiology, 19, 1923–1929.

    PubMed  CAS  Google Scholar 

  • Falkenstein, M., Hohnsbein, J., & Hoormann, J. (1991). Effects of the crossmodal divided attention on late ERP components. II. Error processing in choice reaction tasks. Electroencephalography Clinical Neurophysiology, 78, 447–455.

    CAS  Google Scholar 

  • Falkenstein, M., Hoormann, J., & Hohnsbein, J. (2000). ERP components on reaction errors and their functional significance: a tutorial. Biological Psychology, 51, 87–107.

    Article  PubMed  CAS  Google Scholar 

  • Fazekas, F., Schmidt, R., Kleinert, R., Kapeller, P., Roob, G., & Flooh, E. (1998a). The spectrum of age-associated brain abnormalities: their measurement and histopathological correlates. Journal of Neural Transmission, 53, 31–39.

    PubMed  CAS  Google Scholar 

  • Fazekas, F., Schmidt, R., Kleinert, R., Kapeller, P., Roob, G., & Flooh, E. (1998b). The spectrum of age-associated brain abnormalities: their measurement and histopathological correlates. Journal of Neural Transmission. Supplementum, 53, 31–39 (S).

    PubMed  CAS  Google Scholar 

  • Fernandez-Duque, D., & Posner, M. I. (2001). Brain imaging of attentional networks in normal and pathological states. Journal of Clinical and Experimental Neuropsychology, 23, 74–93.

    Article  PubMed  CAS  Google Scholar 

  • Filley, C. M. (2001). The behavioral neurology of white matter. New York: Oxford University Press.

    Google Scholar 

  • Forsen, S., & Hoffman, R. (1963). Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. Journal of Chemical Physics, 39, 2892–2901.

    Article  CAS  Google Scholar 

  • Ge, Y., Grossman, R. I., Babb, J. S., Ragin, M. L., Mannon, L. J., & Kolson, D. L. (2002). Age-related total gray matter and white matter changes in normal adult brain. Part II: Quantitative magnetization transfer ratio histogram analysis. American Journal of Neuroradiology, 23, 1334–1341.

    Google Scholar 

  • Gehring, W., Goss, B., Coles, M. G. H., Meyer, D. E., & Donchin, E. (1993). A neural system for error detection and compensation. Psychological Sciences, 4, 385–390.

    Article  Google Scholar 

  • Goldman-Rakic, P. S. (1987). Development of cortical circuitry and cognitive function. Child Development, 58, 601–622.

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic, P. S. (1988). Topography of cognition: parallel distributed networks in primate association cortex. Annual Review of Neuroscience, 11, 137–156.

    Article  PubMed  CAS  Google Scholar 

  • Gray, J. R., & Thompson, P. M. (2004). Neurobiology of intelligence: science and ethics. Nature Reviews Neuroscience, 5, 472–482.

    Article  Google Scholar 

  • Gunning-Dixon, F. M., & Raz, N. (2000). The cognitive correlates of white matter abnormalities in normal aging: a quantitative review. Neuropsychology, 14(2), 224–232.

    Article  PubMed  CAS  Google Scholar 

  • Gunning-Dixon, F. M., Head, D., McQuain, J., Acker, J. D., & Raz, N. (1998). Differential aging of the human striatum: a prospective MR imaging study. American Journal of Neuroradiology, 19, 1501–1507.

    PubMed  CAS  Google Scholar 

  • Gunning-Dixon, F. M., Brickman, A. M., Cheng, J. C., & Alexopoulos, G. S. (2009). Aging of cerebral white matter: a review of MRI findings. International Journal of Geriatric Psychiatry, 24(2), 109–117.

    Article  PubMed  Google Scholar 

  • Gur, R. C., Turetsky, B. I., Matsui, M., Yan, M., Bilker, W., Hughett, P., et al. (1999). Sex differences in brain gray and white matter in healthy young adults: correlations with cognitive performance. The Journal of Neuroscience, 19(10), 4065–4072.

    PubMed  CAS  Google Scholar 

  • Hofman, P. A. M., Kemerink, G. J., Jolles, J., & Wilmink, J. T. (1999). Quantitative analysis of magnetization transfer images of the brain: effect of closed head injury, age, and sex on white matter. Magnetization Resonance in Medicine., 42, 803–806.

    Article  CAS  Google Scholar 

  • Holroyd, C. B., & Coles, M. G. H. (2002). The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679–709.

    Article  PubMed  Google Scholar 

  • Kapeller, P., & Schmidt, R. (1998). Concepts and prognostic significance of white matter changes. Journal of Neural Transmission, 53, 69–78.

    PubMed  CAS  Google Scholar 

  • Kennerley, S. W., Walton, M. E., Behrens, T. E., Buckley, M. J., & Rushworth, M. F. S. (2006). Optimal decision making and the anterior cingulate cortex. Nature Neuroscience, 9(7), 940–947.

    Article  PubMed  CAS  Google Scholar 

  • Kiehl, K. A., Liddle, P. F., & Hopfinger, J. B. (2000). Error processing and the rostral anterior cingulate: an event-related fMRI study. Psychophysiology, 37(2), 216–223.

    Article  PubMed  CAS  Google Scholar 

  • Le, T. H., Pardo, J. V., & Hu, X. (1998). 4 T fMRI study of nonspatial shifting of selective attention: cerebellar and parietal contributions. Journal of Neurophysiology, 79, 1535–1548.

    PubMed  CAS  Google Scholar 

  • Lewin, J. S., Friedman, L., Wu, D., Miller, D. A., Thompson, L. A., Klein, S. K., et al. (1996). Cortical localization of human sustained attention: detection with functional MR using a visual vigilance paradigm. Journal of Computer Assisted Tomography, 20, 695–701.

    Article  PubMed  CAS  Google Scholar 

  • Litvan, I., Grafman, J., Vendrell, P., & Martinez, J. M. (1988). Slowed information processing in multiple sclerosis. Archives of Neurology, 45(281–285).

    Google Scholar 

  • Maurelli, M., Marchioni, E., Cerretano, R., Bosone, D., Bergamaschi, R., Citterio, A., et al. (1992). Neuropsychological assessment in MS: clinical, neuropsychological, and neuroradiological relationships. Acta Neurologica Scandinavica, 86, 124–128.

    Article  PubMed  CAS  Google Scholar 

  • Mehta, R., Pike, G., & Enzmann, D. (1995). Magnetization transfer MR of the normal adult brain. American Journal of Neuroradiology, 16, 2085–2091.

    PubMed  CAS  Google Scholar 

  • Mehta, R. C., Pike, G. B., & Enzmann, D. R. (1996). Magnetization transfer magnetic resonance imaging: a clinical review. Topics in Magnetic Resonance Imaging, 8(4), 214–230.

    Article  PubMed  CAS  Google Scholar 

  • Mesulam, M. M. (1990). Large-scale neurocognitive networks and distributed processing for attention, language, and memory. Annals of Neurology, 28, 597–613.

    Article  PubMed  CAS  Google Scholar 

  • Mesulam, M. M., Nobre, A. C., Yun-Hee, K., Parrish, T. B., & Gitelman, D. R. (2001). Heterogeneity of cingulate contributions to spatial attention. NeuroImage, 13, 1065–1072.

    Article  PubMed  CAS  Google Scholar 

  • Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24, 167–202.

    Article  PubMed  CAS  Google Scholar 

  • Miltner, W. H. R., Braun, C. H., & Coles, M. G. H. (1997). Event related brain potentials following incorrect feedback in a time-estimation task: evidence for a “generic” neural system for error detection. Journal of Cognitive Neuroscience, 9, 788–798.

    Article  Google Scholar 

  • Miltner, W. H. R., Lemake, U., Holroyd, C. B., Scheffers, M. K., & Coles, M. G. H. (1998). Where does the brain process errors? On the neural generators of ERN. Psychophysiology, 35, S7.

    Google Scholar 

  • Minamimoto, T., & Kimura, D. (2002). Participation of the thalamic CM-PF complex in attentional orienting. Journal of Neurophysiology, 87, 3090–3101.

    PubMed  Google Scholar 

  • Minamimoto, T., Hori, Y., & Kimura, M. (2005). Complementary process to response bias in the centromedian nucleus of the thalamus. Science, 308, 1798–1801.

    Article  PubMed  CAS  Google Scholar 

  • Norman, D. A., & Bobrow, D. G. (1975). On data-limited and resource-limited processes. Cognitive Psychology, 7, 44–64.

    Article  Google Scholar 

  • Peters, A. (2002). Structural changes in the normally aging cerebral cortex of primates. In E. C. Azmitia, J. DeFelipe, E. G. Jones, P. Rakic & C. E. Ribak (Eds.), Progress in brain research (Vol. 136): Elsevier Science B.V.

  • Peters, A., Rosene, D. L., Moss, M. B., Kemper, T. L., Abraham, C. R., Tigges, J., et al. (1996). Neurobiological bases of age-related cognitive decline in the rhesus monkey. Journal of Neuropathology and Experimental Neurology, 55(8), 861–874.

    PubMed  CAS  Google Scholar 

  • Peters, A., Sethares, C., & Killiany, R. J. (2001). Effects of age on the thickness of myelin sheaths in monkey primary visual cortex. The Journal of Comparative Neurology, 435, 241–248.

    Article  PubMed  CAS  Google Scholar 

  • Posner, M. I., & Dehaene, S. (1994). Attentional Networks., 17(2), 75–79.

    CAS  Google Scholar 

  • Posner, M. I., & Raichle, M. E. (1994). Images of mind. New York: Freeman.

    Google Scholar 

  • Rabbit, P. M. A. (1966). Errors and error correction in choice reaction tasks. Journal of Experimental Psychology, 71, 264–272.

    Article  Google Scholar 

  • Rademacher, J., Engelbrecht, V., Burgel, U., Freund, J. J., & Zilles, K. (1999). Measuring in vivo myelination of human white matter fiber tracts with magnetization transfer MR. NeuroImage, 9, 393–406.

    Article  PubMed  CAS  Google Scholar 

  • Rao, S. M., Leo, G. J., Bernardin, L., & Unverzagt, F. (1991). Cognitive dysfunction in multiple sclerosis I frequency, patterns, and prediction. Neurology, 41, 685–691.

    PubMed  CAS  Google Scholar 

  • Rubia, K., Smith, A. B., Brammer, M. J., Toone, B., & Taylor, E. (2005). Abnormal brain activation during inhibition and error detection in medication-naive adolescents with ADHD. The American Journal of Psychiatry, 162, 1067–1075.

    Article  PubMed  Google Scholar 

  • Sampaio, R. C., & Truwit, C. L. (2001). Myelination in the developing human brain. In C. A. Nelson & M. Luciana (Eds.), Handbook of developmental cognitive neuroscience (pp. 35–44). Cambridge: Massachusetts Institute of Technology.

    Google Scholar 

  • Scheffers, M. K., Coles, M. G. H., Bernstein, P., Gehring, W., & Donchin, E. (1996). Event related brain potentials and error related processing: an analysis of incorrect response to Go No-Go stimuli. Psychophysiology, 33, 42–54.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, R., Fazekas, F., Offenbacher, H., Adusek, T., Zach, E., Reinhart, B., et al. (1993). Neuropsychologic correlates of MRI white matter hyperintensities: a study of 150 normal volunteers. Neurology, 43, 2490–2494.

    PubMed  CAS  Google Scholar 

  • Silver, N. C., Barker, G. J., MacManus, D. G., Tofts, P. S., & Miller, D. H. (1997). Magnetization transfer ratio of normal brain white matter: a normative database spanning four decades of life. Journal of Neurology, Neurosurgery, and Psychiatry, 62(3), 223–228.

    Article  PubMed  CAS  Google Scholar 

  • Smith, E., & Jonides, J. (1999). Storage and executive processes in the frontal lobe. Science, 283, 1657–1661.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, P. J., & Cappelleri, J. C. (2001). Information processing speed deficits may be better correlated with extent of white matter sclerotic lesions in multiple sclerosis than previously suspected. Brain and Cognition, 46, 279–284.

    Article  PubMed  CAS  Google Scholar 

  • Soderlund, H., Nyberg, L., Adolfsson, R., Nilsson, L.-G., & Launer, L. J. (2003). High prevalence of white matter hyperintensities in normal aging: relation to blood pressure and cognition. Cortex, 39(4), 1093–1105.

    Article  PubMed  Google Scholar 

  • Svennerholm, L., Bostrom, K., & Junghjer, B. (1997). Changes in weight and compositions of major membrain components of human brain during the span of adult human life of Swedes. Acta Neuropathologica, 94, 345–352.

    Article  PubMed  CAS  Google Scholar 

  • Tanabe, J., Ezekiel, F., Jagust, W., Schuff, N., & Fein, G. (1997). Volumetric method for evaluating magnetization transfer ratio of tissue categories: application to areas of white matter signal hyperintensity in the elderly. Radiology, 204(570–575).

    Google Scholar 

  • Ullsperger, M., & von Cramon, D. Y. (2001). Subprocesses of performance monitoring: a dissociation of error processing and response competition revealed by fMRI and ERP’s. NeuroImage, 14, 1387–1401.

    Article  PubMed  CAS  Google Scholar 

  • van Buchem, M. A., & Tofts, P. S. (2000). Magnetization transfer imaging. Neuroimaging Clinics of North America, 10(4), 771–788.

    PubMed  Google Scholar 

  • van Buchem, M. A., Grossman, R. I., Armstrong, C., Polansky, M., Miki, Y., Heyning, F. H., et al. (1998). Correlation of volumetric magnetization transfer imaging with clinical data in MS. Neurology, 50, 1609–1617.

    PubMed  Google Scholar 

  • van der Flier, W. J., van den Heuvel, D. M. J., Weverling-Rijnsburger, A. W. E., Bollen, E. L. E., Westendorp, R. G. J., van Buchen, M. A., et al. (2002). Magnetization transfer imaging in normal aging, mild cognitive impairment, and Alzheimer’s disease. Annals of Neurology, 52, 62–67.

    Article  PubMed  Google Scholar 

  • van Veen, V., Cohen, J. D., Botvinick, M. M., Stenger, V. A., & Carter, C. C. (2001). Anterior cingulate cortex, conflict monitoring, and levels of processing. NeuroImage, 14, 1302–1308.

    Article  PubMed  Google Scholar 

  • Vogt, B. A., Finch, D. M., & Olson, C. R. (1992). Functional heterogeneity in cingulate cortex: the anterior executive and posterior evaluative. Cerebral Cortex, 2, 435–443.

    PubMed  CAS  Google Scholar 

  • Wagner, A. D., Maril, A. M., Bjork, A., & Schacter, D. L. (2001). Prefrontal contributions to executive control: fMRI evidence for functional distinctions within lateral prefrontal cortex. NeuroImage, 14, 1337–1347.

    Article  PubMed  CAS  Google Scholar 

  • Waxman, S. G. (1980). Determinants of conduction velocity in myelinated nerve fibers. Muscle & Nerve, 3, 141–150.

    Article  CAS  Google Scholar 

  • Wittfoth, M., Küstermann, E., Fahle, M., & Herrmann, M. (2008). The influence of response conflict on error processing: evidence from event-related fMRI. Brain Research, 1194, 118–129.

    Article  PubMed  CAS  Google Scholar 

  • Wolff, S. D., & Balaban, R. S. (1989). Magnetization transfer contrast (MTC) and tissue water proton relaxation in vivo. Magnetic Resonance in Medicine, 10, 135–144.

    Article  PubMed  CAS  Google Scholar 

  • Wong, K., Grossman, R., Boorstein, J., Lexa, F., & McGowan, J. (1995). Magnetization transfer imaging of periventricular hyperintense white matter in the elderly. American Journal of Neuroradiology, 16, 253–258.

    PubMed  CAS  Google Scholar 

  • Ylikoski, R., Ylikoski, A., Erkinjuntti, T., Sulkava, R., Raininko, R., & Tilvix, R. (1993). White matter changes in healthy elderly persons correlate with attention and speed of mental processing. Archives of Neurology, 50, 818–824.

    PubMed  CAS  Google Scholar 

  • Zikopoulos, B., & Barbas, H. (2006). Prefrontal projections to the thalamic reticular nucleus form a unique circuit for attentional mechanisms. Journal of Neuroscience, 26(28), 7348–7361.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported in part by a grant to the corresponding author from the National Cancer Institute RO1 CA65438, and by the research funds of Peter Phillips, M.D., Director of the Neuro-Oncology Program of Children’s Hospital of Philadelphia, and Hubert J.P. and Anne Faulkner Schoemaker Endowed Chair in Pediatric Neuro-Oncology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carol L. Armstrong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seiler, C.B., Jones, K.E., Shera, D. et al. Brain region white matter associations with visual selective attention. Brain Imaging and Behavior 5, 262–273 (2011). https://doi.org/10.1007/s11682-011-9130-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-011-9130-7

Keywords

Navigation