Skip to main content

Advertisement

Log in

Effects of temporarily disrupting BBB on activity-induced manganese-dependent functional MRI

  • Original Research
  • Published:
Brain Imaging and Behavior Aims and scope Submit manuscript

Abstract

This study further investigates the influence of temporarily disrupting the blood-brain barrier (BBB) on the level of manganese used in AIM fMRI other than the recognized function of allowing that substance to enter into the activated brain regions more effectively during the BBB opening. We injected manganese into Wistar rats through ICA following the disruption of BBB with mannitol in a functional MRI test of the visual cortex. Through comparing MRI signal intensity and manganese contents in the visual cortex of rats received visual stimuli of unequal degree after the restoration of BBB, we found that the signal in the visual cortex could be further enhanced on T1WI given visual stimulation after the restoration of BBB. Temporary BBB disruption has an additional advantage in allowing Mn2+ to enter the CSF or brain for later transference to the activated brain area. So the dosage of manganese in AIM fMRI could be minimized by extending the stimulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aoki, I., Naruse, S., & Tanaka, C. (2004). Manganese-enhanced magnetic resonance imaging (MEMRI) of brain activity and applications to early detection of brain ischemia. NMR in Biomedicine, 17, 569–580.

    Article  PubMed  CAS  Google Scholar 

  • Aoki, I., Wu, Y. J., Silva, A. C., Lynch, R. M., & Koretsky, A. P. (2004). In vivo detection of neuroarchitecture in the rodent brain using manganese-enhanced MRI. Neuroimage, 22, 1046–1059.

    Article  PubMed  Google Scholar 

  • Bearer, E. L., Falzone, T. L., Zhang, X., Biris, O., Rasin, A., & Jacobs, R. E. (2007). Role of neuronal activity and kinesin on tract tracing by manganese-enhanced MRI (MEMRI). Neuroimage, 37(Suppl 1), S37–S46.

    Article  PubMed  Google Scholar 

  • Berkowitz, B. A., Roberts, R., Goebel, D. J., & Luan, H. (2006). Noninvasive and simultaneous imaging of layer-specific retinal functional adaptation by manganese-enhanced MRI. Investigative Ophthalmology and Visual Science, 47, 2668–2674.

    Article  PubMed  Google Scholar 

  • Bhattacharjee, A. K., Nagashima, T., Kondoh, T., & Tamaki, N. (2001). Quantification of early blood-brain barrier disruption by in situ brain perfusion technique. Brain Research. Brain Research Protocols, 8, 126–131.

    Article  PubMed  CAS  Google Scholar 

  • Bissig, D., & Berkowitz, B. A. (2009). Manganese-enhanced MRI of layer-specific activity in the visual cortex from awake and free-moving rats. Neuroimage, 44, 627–635.

    Article  PubMed  Google Scholar 

  • Bock, N. A., Paiva, F. F., & Silva, A. C. (2008). Fractionated manganese-enhanced MRI. NMR in Biomedicine, 21, 473–478.

    Article  PubMed  CAS  Google Scholar 

  • Bock, N. A., Kocharyan, A., & Silva, A. C. (2009). Manganese-enhanced MRI visualizes V1 in the non-human primate visual cortex. NMR in Biomedicine, 22, 730–736.

    Article  PubMed  Google Scholar 

  • Brurok, H., SchjØtt, J., Berg, K., Karlsson, J. O., & Jynge, P. (1997). Manganese and the heart: acute cardiodepression and myocardial accumulation of manganese. Acta Physiologica Scandinavica, 159, 33–40.

    Article  PubMed  CAS  Google Scholar 

  • Chiu, J. H., Chung, M. S., Cheng, H. C., Yeh, T. C., Hsieh, J. C., Chang, C. Y., et al. (2003). Different central manifestations in response to electroacupuncture at analgesic and nonanalgesic acupoints in rats: a manganese-enhanced functional magnetic resonance imaging study. Canadian Journal of Veterinary Research, 67, 94–101.

    PubMed  Google Scholar 

  • Gerdin, B., McCann, E., Lundberg, C., & Arfors, K. E. (1985). Selective tissue accumulation of manganese and its effect on regional blood flow and haemodynamics after intravenous infusion of its chloride salt in the rat. International Journal of Tissue Reactions, 7, 373–380.

    PubMed  CAS  Google Scholar 

  • Lee, J. H., Silva, A. C., Merkle, H., & Koretsky, A. P. (2005). Manganese-enhanced magnetic resonance imaging of mouse brain after systemic administration of MnCl2: dose-dependent and temporal evolution of T1 contrast. Magnetic Resonance in Medicine, 53, 640–648.

    Article  PubMed  CAS  Google Scholar 

  • Leergaard, T. B., Bjaalie, J. G., Devor, A., Wald, L. L., & Dale, A. M. (2003). In vivo tracing of major rat brain pathways using manganese-enhanced magnetic resonance imaging and three-dimensional digital atlasing. Neuroimage, 20, 1591–1600.

    Article  PubMed  Google Scholar 

  • Li, Y., Fang, F., Wang, X., & Lei, H. (2009). Neuronal projections from ventral tegmental area to forebrain structures in rat studied by manganese-enhanced magnetic resonance imaging. Magnetic Resonance Imaging, 27, 293–299.

    Article  PubMed  CAS  Google Scholar 

  • Lin, Y. J., & Koretsky, A. P. (1997). Manganese ion enhances T1-weighted MRI during brain activation: an approach to direct imaging of brain function. Magnetic Resonance in Medicine, 38, 378–388.

    Article  PubMed  CAS  Google Scholar 

  • Liu, C. H., D’Arceuil, H. E., & de Crespigny, A. J. (2004). Direct CSF injection of MnCl(2) for dynamic manganese-enhanced MRI. Magnetic Resonance in Medicine, 51, 978–987.

    Article  PubMed  CAS  Google Scholar 

  • Lu, H., Xi, Z. X., Gitajn, L., Rea, W., Yang, Y., & Stein, E. A. (2007). Cocaine-induced brain activation detected by dynamic manganese-enhanced magnetic resonance imaging (MEMRI). Proceedings of the National Academy of Sciences of the United States of America, 104, 2489–2494.

    Article  PubMed  CAS  Google Scholar 

  • Lu, H., Yang, S., Zuo, Y., Demny, S., Stein, E. A., & Yang, Y. (2008). Real-time animal functional magnetic resonance imaging and its application to neuropharmacological studies. Magnetic Resonance Imaging, 26, 1266–1272.

    Article  PubMed  Google Scholar 

  • Morello, M., Canini, A., Mattioli, P., Sorge, R. P., Alimonti, A., Bocca, B., et al. (2008). Sub-cellular localization of manganese in the basal ganglia of normal and manganese-treated rats An electron spectroscopy imaging and electron energy-loss spectroscopy study. Neurotoxicology, 29, 60–72.

    Article  PubMed  CAS  Google Scholar 

  • Paxinos, G., & Watson, C. (2004). The rat brain in stereotaxic coordinates (5th ed., pp. 118–139). Orlando: Academic.

    Google Scholar 

  • Rapoport, S. I. (2000). Osmotic opening of the blood-brain barrier: principles, mechanism, and therapeutic applications. Cellular and Molecular Neurobiology, 20, 217–230.

    Article  PubMed  CAS  Google Scholar 

  • Weng, J. C., Chen, J. H., Yang, P. F., & Tseng, W. Y. (2007). Functional mapping of rat barrel activation following whisker stimulation using activity-induced manganese-dependent contrast. Neuroimage, 36, 1179–1188.

    Article  PubMed  Google Scholar 

  • Yu, X., Wadghiri, Y. Z., Sanes, D. H., & Turnbull, D. H. (2005). In vivo auditory brain mapping in mice with Mn-enhanced MRI. Nature Neuroscience, 8, 961–968.

    PubMed  CAS  Google Scholar 

  • Yu, X., Zou, J., Babb, J. S., Johnson, G., Sanes, D. H., & Turnbull, D. H. (2008). Statistical mapping of sound-evoked activity in the mouse auditory midbrain using Mn-enhanced MRI. Neuroimage, 39, 223–230.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by Funds for Key Sci-Tech Research Projects of Guangdong Province [YUECAIJIAO (2008) 258-2008A030201019, YUE KEJIBAN (2007) 05/06-7005206], and Funds for Key Sci-Tech Research Projects of Guangzhou [SUIKETIAOZI (2008)3-2008A1-E4011-6, 09B52120112-2009J1-C418-2] to Prof. Xiaodan Jiang.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dingguo Gao, Yanjun Zeng or Xiaodan Jiang.

Additional information

Zhiqiang Fa, Run Zhang and Peng Li, These authors contributed equally to this research

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fa, Z., Zhang, R., Li, P. et al. Effects of temporarily disrupting BBB on activity-induced manganese-dependent functional MRI. Brain Imaging and Behavior 5, 181–188 (2011). https://doi.org/10.1007/s11682-011-9122-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11682-011-9122-7

Keywords

Navigation