Advertisement

Brain Imaging and Behavior

, Volume 4, Issue 2, pp 177–188 | Cite as

Failing Compensatory Mechanisms During Working Memory in Older Apolipoprotein E-ε4 Healthy Adults

  • Francesca M. Filbey
  • Gang Chen
  • Trey Sunderland
  • Robert M. Cohen
Article

Abstract

How and when the known genetic risk allele, apolipoprotein E-ε4 (APOEε4), confers risk to Alzheimer’s disease has yet to be determined. We studied older adults and found that APOEε4 carriers had greater neural activation in the medial frontal and parahippocampal gyrus during a memory task (cluster-corrected p < .01). When compared to a group of younger adults, interactive effects of age and APOEε4 were found in the inferior frontal—anterior temporal region, one of the first areas to develop amyloid plaques in patients with Alzheimer’s disease, and, in the posterior cingulate, one of the earliest areas to show decreased cerebral metabolism in Alzheimer’s disease. Thus, abnormally high activation in fronto-temporal areas are present in both younger and older APOEε4 carriers confronted with a working memory task when compared to non-APOEε4 carriers. This effect, however, appears to diminish with age.

Keywords

fMRI APOE Alzheimer’s disease Working memory Compensation 

Notes

Acknowledgments

We are grateful to Karen Putnam for managing our blind to the subjects’ genotypes. Also, thanks to Irene Dustin, NP for providing the clinical screens and to Heather Kiefer and Kelly Slack for the data collection.

References

  1. Anderson, V. C., Litvack, Z. N., & Kaye, J. A. (2005). Magnetic resonance approaches to brain aging and Alzheimer disease-associated neuropathology. Topics in Magnetic Resonance Imaging, 16(6), 439–452.CrossRefPubMedGoogle Scholar
  2. Bartres-Faz, D., Serra-Grabulosa, J. M., Sun, F. T., Sole-Padulles, C., Rami, L., Molinuevo, J. L., et al. (2007). Functional connectivity of the hippocampus in elderly with mild memory dysfunction carrying the APOE varepsilon4 allele. Neurobiology of Aging.Google Scholar
  3. Bassett, S. S., Yousem, D. M., Cristinzio, C., Kusevic, I., Yassa, M. A., Caffo, B. S., et al. (2006). Familial risk for Alzheimer’s disease alters fMRI activation patterns. Brain, 129(Pt 5), 1229–1239.CrossRefPubMedGoogle Scholar
  4. Bondi, M. W., Houston, W. S., Eyler, L. T., & Brown, G. G. (2005). fMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease. Neurology, 64(3), 501–508.PubMedGoogle Scholar
  5. Bookheimer, S. Y., Strojwas, M. H., Cohen, M. S., Saunders, A. M., Pericak-Vance, M. A., Mazziotta, J. C., et al. (2000). Patterns of brain activation in people at risk for Alzheimer’s disease. The New England Journal of Medicine, 343(7), 450–456.CrossRefPubMedGoogle Scholar
  6. Borghesani, P. R., Johnson, L. C., Shelton, A. L., Peskind, E. R., Aylward, E. H., Schellenberg, G. D., et al. (2007). Altered medial temporal lobe responses during visuospatial encoding in healthy APOE*4 carriers. Neurobiology of Aging.Google Scholar
  7. Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica, 82(4), 239–259.CrossRefPubMedGoogle Scholar
  8. Buckner, R. L. (2004). Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron, 44(1), 195–208.CrossRefPubMedGoogle Scholar
  9. Burggren, A. C., Small, G. W., Sabb, F. W., & Bookheimer, S. Y. (2002). Specificity of brain activation patterns in people at genetic risk for Alzheimer disease. American Journal of Geriatric Psychiatry, 10(1), 44–51.Google Scholar
  10. Cabeza, R. (2000). Handbook of functional neuroimaging of cognition. Cambridge: MIT Press.Google Scholar
  11. Cohen, M. S. (1997). Parametric analysis of fMRI data using linear systems methods. Neuroimage, 6(2), 93–103.CrossRefPubMedGoogle Scholar
  12. Cohen, J. D., MacWhinney, B., Flatt, M., & Provost, J. (1993). PsyScope: a new graphic interactive environment for designing psychology experiments. Behavior Research Methods, Instruments, & Computers, 25(2), 257–271.Google Scholar
  13. Cohen, R. M., Small, C., Lalonde, F., Friz, J., & Sunderland, T. (2001). Effect of apolipoprotein E genotype on hippocampal volume loss in aging healthy women. Neurology, 57(12), 2223–2228.PubMedGoogle Scholar
  14. Cohen, R. M., Podruchny, T. A., Bokde, A. L., Carson, R. E., Herscovitch, P., Kiesewetter, D. O., et al. (2003). Higher in vivo muscarinic-2 receptor distribution volumes in aging subjects with an apolipoprotein E-epsilon4 allele. Synapse, 49(3), 150–156.CrossRefPubMedGoogle Scholar
  15. Cohen, R. M., Carson, R. E., Filbey, F., Szczepanik, J., & Sunderland, T. (2006). Age and APOE-epsilon4 genotype influence the effect of physostigmine infusion on the in-vivo distribution volume of the muscarinic-2-receptor dependent tracer [18F]FP-TZTP. Synapse, 60(1), 86–92.CrossRefPubMedGoogle Scholar
  16. Cox, R. W. (1996). AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29(3), 162–173.CrossRefPubMedGoogle Scholar
  17. Devanand, D. P., Habeck, C. G., Tabert, M. H., Scarmeas, N., Pelton, G. H., Moeller, J. R., et al. (2006). PET network abnormalities and cognitive decline in patients with mild cognitive impairment. Neuropsychopharmacology, 31(6), 1327–1334.PubMedGoogle Scholar
  18. Dickerson, B. C., Salat, D. H., Greve, D. N., Chua, E. F., Rand-Giovannetti, E., Rentz, D. M., et al. (2005). Increased hippocampal activation in mild cognitive impairment compared to normal aging and AD. Neurology, 65(3), 404–411.CrossRefPubMedGoogle Scholar
  19. Filbey, F. M., Holroyd, T., Carver, F., Sunderland, T., & Cohen, R. M. (2005). A magnetoencephalography spatiotemporal analysis of neural activities during feature binding. NeuroReport, 16(16), 1747–1752.CrossRefPubMedGoogle Scholar
  20. Filbey, F. M., Slack, K. J., Sunderland, T. P., & Cohen, R. M. (2006). Functional magnetic resonance imaging and magnetoencephalography differences associated with APOEepsilon4 in young healthy adults. NeuroReport, 17(15), 1585–1590.CrossRefPubMedGoogle Scholar
  21. Fleisher, A. S., Houston, W. S., Eyler, L. T., Frye, S., Jenkins, C., Thal, L. J., et al. (2005). Identification of Alzheimer disease risk by functional magnetic resonance imaging. Archives of Neurology, 62(12), 1881–1888.CrossRefPubMedGoogle Scholar
  22. Forman, S. D., Cohen, J. D., Fitzgerald, M., Eddy, W. F., Mintun, M. A., & Noll, D. C. (1995). Improved assessment of significant change in functional magnetic resonance imaging (fMri): use of a cluster size threshold. Magnetic Resonance in Medicine, 33, 636–647.CrossRefPubMedGoogle Scholar
  23. Greenwood, P. M., Lambert, C., Sunderland, T., & Parasuraman, R. (2005). Effects of apolipoprotein E genotype on spatial attention, working memory, and their interaction in healthy, middle-aged adults: results From the National Institute of Mental Health’s BIOCARD study. Neuropsychology, 19(2), 199–211.CrossRefPubMedGoogle Scholar
  24. Han, S. D., & Bondi, M. W. (2008). Revision of the apolipoprotein E compensatory mechanism recruitment hypothesis. Alzheimers Dement, 4(4), 251-254.Google Scholar
  25. Han, S. D., Houston, W. S., Jak, A. J., Eyler, L. T., Nagel, B. J., Fleisher, A. S., et al. (2006). Verbal paired-associate learning by APOE genotype in non-demented older adults: fMRI evidence of a right hemispheric compensatory response. Neurobiol Aging.Google Scholar
  26. Han, S. D., Houston, W. S., Jak, A. J., Eyler, L. T., Nagel, B. J., Fleisher, A. S., et al. (2007). Verbal paired-associate learning by APOE genotype in non-demented older adults: fMRI evidence of a right hemispheric compensatory response. Neurobiology of Aging, 28(2), 238–247.CrossRefPubMedGoogle Scholar
  27. Hasselmo, M. E., & Stern, C. E. (2006). Mechanisms underlying working memory for novel information. Trends in Cognitive Sciences, 10(11), 487–493.CrossRefPubMedGoogle Scholar
  28. Jak, A. J., Houston, W. S., Nagel, B. J., Corey-Bloom, J., & Bondi, M. W. (2007). Differential cross-sectional and longitudinal impact of APOE genotype on hippocampal volumes in nondemented older adults. Dementia and Geriatric Cognitive Disorders, 23(6), 382–389.CrossRefPubMedGoogle Scholar
  29. Johnson, S. C., Ries, M. L., Hess, T. M., Carlsson, C. M., Gleason, C. E., Alexander, A. L., et al. (2007). Effect of Alzheimer disease risk on brain function during self-appraisal in healthy middle-aged adults. Archives of General Psychiatry, 64(10), 1163–1171.CrossRefPubMedGoogle Scholar
  30. Kemppainen, N. M., Aalto, S., Wilson, I. A., Nagren, K., Helin, S., Bruck, A., et al. (2007). PET amyloid ligand [11C]PIB uptake is increased in mild cognitive impairment. Neurology, 68(19), 1603–1606.CrossRefPubMedGoogle Scholar
  31. Logan, J., Fowler, J. S., Ding, Y. S., Franceschi, D., Wang, G. J., Volkow, N. D., et al. (2002). Strategy for the formation of parametric images under conditions of low injected radioactivity applied to PET studies with the irreversible monoamine oxidase A tracers [11C]clorgyline and deuterium-substituted [11C]clorgyline. Journal of Cerebral Blood Flow and Metabolism, 22(11), 1367–1376.Google Scholar
  32. Mitchell, K. J., Johnson, M. K., Raye, C. L., & D’Esposito, M. (2000a). fMRI evidence of age-related hippocampal dysfunction in feature binding in working memory. Brain Research. Cognitive Brain Research, 10(1–2), 197–206.CrossRefPubMedGoogle Scholar
  33. Mitchell, K. J., Johnson, M. K., Raye, C. L., & D’Esposito, M. (2000b). fMRI evidence of age-related hippocampal dysfunction in feature binding in working memory. Brain Research. Cognitive Brain Research, 10(1–2), 197–206.CrossRefPubMedGoogle Scholar
  34. Mosconi, L., Brys, M., Switalski, R., Mistur, R., Glodzik, L., Pirraglia, E., et al. (2007). Maternal family history of Alzheimer’s disease predisposes to reduced brain glucose metabolism. Proceedings of the National Academy of Sciences of the United States of America, 104(48), 19067–19072.CrossRefPubMedGoogle Scholar
  35. Nestor, P. J., Fryer, T. D., Ikeda, M., & Hodges, J. R. (2003a). Retrosplenial cortex (BA 29/30) hypometabolism in mild cognitive impairment (prodromal Alzheimer’s disease). The European Journal of Neuroscience, 18(9), 2663–2667.CrossRefPubMedGoogle Scholar
  36. Nestor, P. J., Fryer, T. D., Smielewski, P., & Hodges, J. R. (2003b). Limbic hypometabolism in Alzheimer’s disease and mild cognitive impairment. Annals of Neurology, 54(3), 343–351.CrossRefPubMedGoogle Scholar
  37. Persson, J., Lind, J., Larsson, A., Ingvar, M., Sleegers, K., Van Broeckhoven, C., et al. (2008). Altered deactivation in individuals with genetic risk for Alzheimer’s disease. Neuropsychologia, 46(6), 1679–1687.Google Scholar
  38. Pihlajamaki, M., & Sperling, R. A. (2009). Functional MRI assessment of task-induced deactivation of the default mode network in Alzheimer’s disease and atrisk older individuals. Behavioural Neurology, 21(1), 77–91.Google Scholar
  39. Ranganath, C., & D’Esposito, M. (2005). Directing the mind’s eye: prefrontal, inferior and medial temporal mechanisms for visual working memory. Current Opinion in Neurobiology, 15(2), 175–182.CrossRefPubMedGoogle Scholar
  40. Reiman, E. M., Caselli, R. J., Yun, L. S., Chen, K., Bandy, D., Minoshima, S., et al. (1996). Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. The New England Journal of Medicine, 334(12), 752–758.CrossRefPubMedGoogle Scholar
  41. Reiman, E. M., Chen, K., Alexander, G. E., Caselli, R. J., Bandy, D., Osborne, D., et al. (2005). Correlations between apolipoprotein E epsilon4 gene dose and brain-imaging measurements of regional hypometabolism. Proceedings of the National Academy of Sciences of the United States of America, 102(23), 8299–8302.CrossRefPubMedGoogle Scholar
  42. Reiman, E. M., Chen, K., Liu, X., Bandy, D., Yu, M., Lee, W., et al. (2009). Fibrillar amyloid-beta burden in cognitively normal people at 3 levels of genetic risk for Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 106(16), 6820–6825.Google Scholar
  43. Rosen, V. M., Bergeson, J. L., Putnam, K., Harwell, A., & Sunderland, T. (2002). Working memory and apolipoprotein E: what’s the connection? Neuropsychologia, 40(13), 2226–2233.CrossRefPubMedGoogle Scholar
  44. Roses, A. D. (1996). Apolipoprotein E alleles as risk factors in Alzheimer's disease. Annual Review of Medicine, 47, 387–400.Google Scholar
  45. Roses, A. D. (2006). On the discovery of the genetic association of Apolipoprotein E genotypes and common late-onset Alzheimer disease. Journal of Alzheimer’s Disease, 9(3 Suppl), 361–366.Google Scholar
  46. Rowe, C. C., Ng, S., Ackermann, U., Gong, S. J., Pike, K., Savage, G., et al. (2007). Imaging beta-amyloid burden in aging and dementia. Neurology, 68(20), 1718–1725.CrossRefPubMedGoogle Scholar
  47. Scarmeas, N., & Stern, Y. (2005). fMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease. Neurology, 65(9), 1514–1515. author reply 1514–1515.PubMedGoogle Scholar
  48. Scarmeas, N., Anderson, K. E., Hilton, J., Park, A., Habeck, C., Flynn, J., et al. (2004). APOE-dependent PET patterns of brain activation in Alzheimer disease. Neurology, 63(5), 913–915.PubMedGoogle Scholar
  49. Scarmeas, N., Habeck, C. G., Hilton, J., Anderson, K. E., Flynn, J., Park, A., et al. (2005). APOE related alterations in cerebral activation even at college age. Journal of Neurology, Neurosurgery and Psychiatry, 76, 1440–1444.CrossRefGoogle Scholar
  50. Snodgrass, J. G., & Vanderwart, M. (1980). A standardized set of 260 pictures: norms for name agreement, image agreement, familiarity, and visual complexity. Journal of Experimental Psychology, 6(2), 174–215.Google Scholar
  51. Stern, C. E., Sherman, S. J., Kirchhoff, B. A., & Hasselmo, M. E. (2001). Medial temporal and prefrontal contributions to working memory tasks with novel and familiar stimuli. Hippocampus, 11(4), 337–346.CrossRefPubMedGoogle Scholar
  52. Tisserand, D. J., & Jolles, J. (2003). On the involvement of prefrontal networks in cognitive ageing. Cortex, 39(4-5), 1107–1128.Google Scholar
  53. Tsai, M. S., Tangalos, E. G., Petersen, R. C., Smith, G. E., Schaid, D. J., Kokmen, E., et al. (1994). Apolipoprotein E: risk factor for Alzheimer disease. American Journal of Human Genetics, 54(4), 643–649.Google Scholar
  54. Wishart, H. A., Saykin, A. J., McAllister, T. W., Rabin, L. A., McDonald, B. C., Flashman, L. A., et al. (2006a). Regional brain atrophy in cognitively intact adults with a single APOE epsilon4 allele. Neurology, 67(7), 1221–1224.CrossRefPubMedGoogle Scholar
  55. Wishart, H. A., Saykin, A. J., Rabin, L. A., Santulli, R. B., Flashman, L. A., Guerin, S. J., et al. (2006b). Increased brain activation during working memory in cognitively intact adults with the APOE epsilon4 allele. The American Journal of Psychiatry, 163(9), 1603–1610.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Francesca M. Filbey
    • 1
    • 3
  • Gang Chen
    • 2
  • Trey Sunderland
    • 1
  • Robert M. Cohen
    • 1
    • 4
  1. 1.Geriatric Psychiatry BranchNIMH, National Institutes of HealthBethesdaUSA
  2. 2.Scientific and Statistical Computing CoreNIMH, National Institutes of HealthBethesdaUSA
  3. 3.The Mind Research NetworkAlbuquerqueUSA
  4. 4.Department of Psychiatry and Behavioral Neurosciences and S. Mark Taper Department of ImagingCedars-Sinai Medical CenterLos AngelesUSA

Personalised recommendations