Brain Imaging and Behavior

, Volume 2, Issue 3, pp 177–191 | Cite as

Gender Effects on HIV-Associated White Matter Alterations: A Voxel-Wise DTI Study

  • Clifford A. Smith
  • Glenn T. Stebbins
  • Russell E. Bartt
  • Harold A. Kessler
  • Oluwatoyin M. Adeyemi
  • Eileen Martin
  • Roland Bammer
  • Michael E. Moseley


Sexual dimorphisms within the human brain are well-documented. Human immunodeficiency virus (HIV) infection is associated with atrophy and microstructural white matter alterations, yet sex-specific dimorphic brain alterations in persons living with HIV have not been systematically examined. To address this issue, we evaluated regional differences in normal-appearing white matter (NAWM) in adults with and without HIV utilizing diffusion tensor imaging. Through a voxel-by-voxel analytic approach, sexual dimorphisms in NAWM anisotropy and diffusivity were identified. In comparison to seronegative men and women, HIV infection contributed to a decline in the distribution of anisotropic differences between the sexes. Alterations in diffusivity were more complex, with seropositive women demonstrating an increase in regional diffusivity, while seropositive men demonstrated a reduction in regional differences. Sex by serostatus interactions within the left frontal lobe and bilateral thalamic region were identified. These results suggest that HIV contributes to sex-specific microstructural NAWM alterations, such that sex and serostatus differentially alter the integrity of the neuronal matrix.


Diffusion tensor imaging Neuroimaging HIV/AIDS Gender 


  1. Abe, O., Aoki, S., Hayashi, N., Yamada, H., Kunimatsu, A., Mori, H., et al. (2002). Normal aging in the central nervous system: Quantitative MR diffusion-tensor analysis. Neurobiology of Aging, 23, 433–441.PubMedGoogle Scholar
  2. Abe, O., Yamasue, H., Kasai, K., Yamada, H., Aoki, S., Iwanami, A., et al. (2006). Voxel-based diffusion tensor analysis reveals aberrant anterior cingulum integrity in posttraumatic stress disorder due to terrorism. Psychiatry Research, 146, 231–242.PubMedGoogle Scholar
  3. Allen, J. S., Damasio, H., Grabowski, T. J., Bruss, J., & Zhang, W. (2003). Sexual dimorphism and asymmetries in the gray-white composition of the human cerebrum. Neuroimage, 18, 880–894.PubMedGoogle Scholar
  4. Amunts, K., Jancke, L., Mohlberg, H., Steinmetz, H., & Zilles, K. (2000). Interhemispheric asymmetry of the human motor cortex related to handedness and gender. Neuropsychologia, 38, 304–312.PubMedGoogle Scholar
  5. Ballmaier, M., O’Brien, J. T., Burton, E. J., Thompson, P. M., Rex, D. E., Narr, K. L., et al. (2004). Comparing gray matter loss profiles between dementia with Lewy bodies and Alzheimer’s disease using cortical pattern matching: Diagnosis and gender effects. Neuroimage, 23, 325–335.PubMedGoogle Scholar
  6. Beck, A. T. (1996). Beck Depression Inventory—II. San Antonio, TX: The Psychological Corporation.Google Scholar
  7. Bishop, K. M., & Wahlsten, D. (1997). Sex differences in the human corpus callosum: Myth or reality? Neuroscience and Biobehavior Review, 21(5), 581–601.Google Scholar
  8. Castelo, J. M., Courtney, M. G., Melrose, R. J., & Stern, C. E. (2007). Putamen hypertrophy in nondemented patients with human immunodeficiency virus infection and cognitive compromise. Archives of Neurology, 64(9), 1275–1280.PubMedGoogle Scholar
  9. Coffey, C. E., Lucke, J. F., Saxton, J. A., Ratcliff, G., Unitas, L. J., Billig, B., et al. (1998). Sex differences in brain aging: A quantitative magnetic resonance imaging study. Archives of Neurology, 55(2), 169–179.PubMedGoogle Scholar
  10. Folstein, M. F., Folstein, S. E., & McHugh, P. R. (1975). ‘Mini-mental State’: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatry Research, 12, 189–198.Google Scholar
  11. Geschwind, N., & Galaburda, A. M. (1985a). Cerebral lateralization. Biological mechanisms, associations, and pathology: I. A hypothesis and a program for research. Archives of Neurology, 42, 428–459.PubMedGoogle Scholar
  12. Geschwind, N., & Galaburda, A. M. (1985b). Cerebral lateralization. Biological mechanisms, associations, and pathology: II. A hypothesis and a program for research. Archives of Neurology, 42, 521–552.PubMedGoogle Scholar
  13. Geschwind, N., & Galaburda, A. M. (1985c). Cerebral lateralization. Biological mechanisms, associations, and pathology: III. A hypothesis and a program for research. Archives of Neurology, 42, 634–654.PubMedGoogle Scholar
  14. Goldstein, J. M., Seidman, L. J., Horton, N. J., Makris, N., Kennedy, D. N., Caviness, V. S., et al. (2001). Normal sexual dimorphism of the adult human brain assessed by in vivo magnetic resonance imaging. Cerebral Cortex, 11, 490–497.PubMedGoogle Scholar
  15. Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N., Friston, K. J., & Frackowiak, R. S. J. (2001a). A voxel-based morphometric study of ageing in 465 normal adult human brains. Neuroimage, 14, 21–36.PubMedGoogle Scholar
  16. Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N., Friston, K. J., & Frackowiak, R. S. J. (2001b). Cerebral asymmetry and the effects of sex and handedness on brain structure: A voxel-based morphometric analysis of 465 normal adult human brains. Neuroimage, 14, 685–700.PubMedGoogle Scholar
  17. Gur, R. C., Mozley, P. D., Resnick, S. M., Gottlieb, G. L., Kohn, M., Zimmerman, R., et al. (1991). Gender differences in age effect on brain atrophy measures by magnetic resonance imaging. Proceedings of the National Academy of Sciences of the United States of America, 88, 2845–2849.PubMedGoogle Scholar
  18. Gur, R. C., Turetsky, B. I., Matsui, M., Yan, M., Bilker, W., Hughett, P., et al. (1999). Sex differences in brain gray and white matter in healthy young adults: correlations with cognitive performance. The Journal of Neuroscience, 19(10), 4065–4072.PubMedGoogle Scholar
  19. Haselgrove, J. C., & Moore, J. R. (1996). Correction for distortion of echo-planar images used to calculate the apparent diffusion coefficient. Magnetic Resonance in Medicine, 36(6), 960–964.PubMedGoogle Scholar
  20. Hoeft, F., Barnea-Goraly, N., Haas, B. W., Golarai, G., Ng, D., Mills, D., et al. (2007). More is not always better: increased fractional anisotropy of superior longitudinal fasciculus associated with poor visuospatial abilities in Williams syndrome. Journal of Neuroscience, 27, 11960–11965.PubMedGoogle Scholar
  21. Hsu, J. L., Leemans, A., Bai, C. H., Lee, C. H., Tsai, Y. F., Chiu, H. C., et al. (2008). Gender differences and age-related white matter changes of the human brain: A diffusion tensor imaging study. Neuroimage, 39(2), 566–77.PubMedGoogle Scholar
  22. Im, K., Lee, J. M., Lee, J., Shin, Y. W., Kim, I. Y., Kwon, J. S., et al. (2006). Gender difference analysis of cortical thickness in healthy young adults with surface-based methods. Neuroimage, 31, 31–38.PubMedGoogle Scholar
  23. Jones, D. K., Symms, M. R., Cercignani, M., & Howard, R. J. (2005). The effect of filter size on VBM analyses of DT-MRI data. Neuroimage, 26, 546–554.PubMedGoogle Scholar
  24. Kidron, D., Black, S. E., Stanchev, P., Buck, B., Szalai, J. P., Parker, J., et al. (1997). Quantitative MR volumetry in Alzheimer’s disease: Topographic markers and the effects of sex and education. Neurology, 49(6), 1504–1512.PubMedGoogle Scholar
  25. Kingsley, P. B. (2006). Inroduction to diffusion tensor imaging mathematics: Part II. Anisotropy, diffusion weighting factors, and gradient encoding schemes. Concepts in Magnetic Resonance Part A, 28A(2), 123–154.Google Scholar
  26. Lacerda, A. L., Keshavan, M. S., Hardan, A. Y., Yorbik, O., Brambilla, P., Sassi, R. B., et al. (2004). Anatomic evaluation of the orbitofrontal cortex in major depressive disorder. Biological Psychiatry, 55(4), 353–358.PubMedGoogle Scholar
  27. Lavretsky, H., Kurbanyan, K., Ballmaier, M., Mintz, J., Toga, A., & Kumar, A. (2004). Sex differences in brain structure in geriatric depression. American Journal of Geriatric Psychiatry, 12(6), 653–657.PubMedGoogle Scholar
  28. Lopez, O. L., Wess, J., Sanchez, J., Dew, M. A., & Becker, J. T. (1999). Neurological characteristics of HIV-infected men and women seeking primary medical care. European Journal of Neurology, 6, 205–209.PubMedGoogle Scholar
  29. Luders, E., Narr, K. L., Thompson, P. M., Rex, D. E., Jancke, L., Steinmetz, H., et al. (2004). Gender differences in cortical complexity. Nature Neuroscience, 7, 799–800.PubMedGoogle Scholar
  30. Luders, E., Narr, K. L., Thompson, P. M., Woods, R. P., Rex, D. E., Jancke, L., et al. (2005). Mapping cortical gray matter in the young adult brain: Effects of gender. Neuroimage, 26, 493–501.PubMedGoogle Scholar
  31. Luders, E., Narr, K. L., Zaidel, E., Thompson, P. M., & Toga, A. W. (2006). Gender effects on callosal thickness in scaled and unscaled space. Neuroreport, 17(11), 1103–1106.PubMedGoogle Scholar
  32. Luders, E., Steinmetz, H., & Jancke, L. (2002). Brain size and grey matter volume in the healthy human brain. Neuroreport, 13, 2371–2374.PubMedGoogle Scholar
  33. Maldjian, J. A., Laurienti, P. J., Kraft, R. A., & Burdette, J. H. (2003). An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage, 19(3), 1233–1239.PubMedGoogle Scholar
  34. McEwen, B. (2002). Estrogen actions throughout the brain. Recent Progress in Hormone Research, 57, 357–384.PubMedGoogle Scholar
  35. Medina, D., DeToledo-Morrell, L., Urresta, F., Gabrieli, J. D., Moseley, M., Fleischman, D., et al. (2006). White matter changes in mild cognitive impairment and AD: A diffusion tensor imaging study. Neurobiology of Aging, 27(5), 663–672.PubMedGoogle Scholar
  36. Moseley, M. E. (2002). Diffusion tensor imaging and aging—A review. NMR Biomed, 15, 553–560.PubMedGoogle Scholar
  37. Nicastri, E., Angeletti, C., Palmisano, L., Sarmati, L., Chiesi, A., Geraci, A., et al. (2005). Italian Antiretroviral Treatment Group. Gender differences in clinical progression of HIV-1-infected individuals during long-term highly active antiretroviral therapy. AIDS, 19(6), 577–583.PubMedGoogle Scholar
  38. Nopoulos, P., Flaum, M., O’Leary, D., & Andreasen, N. C. (2000). Sexual dimorphism in the human brain: Evaluation of tissue volume, tissue composition and surface anatomy using magnetic resonance imaging. Psychiatry Research, 98, 1–13.PubMedGoogle Scholar
  39. Oh, J. S., Song, I. C., Lee, J. S., Kang, H., Park, K. S., Kang, E., et al. (2007). Tractography-guided statistics (TGIS) in diffusion tensor imaging for the detection of gender difference of fiber integrity in the midsagittal and parasagittal corpora callosa. Neuroimage, 36(3), 606–616.PubMedGoogle Scholar
  40. Paus, T., Otaky, N., Caramanos, Z., MacDonald, D., Zijdenbos, A., D’Avirro, D., et al. (1996). In vivo morphometry of the intrasulcal gray matter in the human cingulate, paracingulate, and superior-rostral sulci: Hemispheric asymmetries, gender differences and probability maps. Journal of Comparative Neurology, 376(4), 664–73.PubMedGoogle Scholar
  41. Pfefferbaum, A., Rosenbloom, M., Deshmukh, A., & Sullivan, E. (2001). Sex differences in the effects of alcohol on brain structure. American Journal of Psychiatry, 158(2), 188–197.PubMedGoogle Scholar
  42. Pierpaoli, C., & Basser, P. J. (1996). Toward a quatitative assessment of diffusion anisotropy. Magnetic Resonance in Medicine, 36(6), 893–906.PubMedGoogle Scholar
  43. Power, C., Selnes, O. A., Grim, J. A., & McArthur, J. C. (1995). HIV Dementia Scale: A rapid screening test. Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology, 8(3), 273–278.PubMedGoogle Scholar
  44. Raz, N., Gunning-Dixon, F., Head, D., Rodrigue, K. M., Williamson, A., & Acker, J. D. (2004). Aging, sexual dimorphism, and hemispheric asymmetry of the cerebral cortex: Replicability of regional differences in volume. Neurobiology of Aging, 25(3), 377–396.PubMedGoogle Scholar
  45. Raz, N., Gunning-Dixon, F., Head, D., Williamson, A., & Acker, J. D. (2001). Age and sex differences in the cerebellum and the ventral pons: A prospective MR study of healthy adults. American Journal of Neuroradiology, 22(6), 1161–1167.PubMedGoogle Scholar
  46. Robertson, K., Fiscus, S., Wilkins, J., van der Horst, C., Hall, C. (1996). Viral load and nueropsychological functioning in HIV seropositive individuals: a preliminary descriptive study. Journal of Nuero-AIDS, 1(4), 7–15.Google Scholar
  47. Robertson, K. R., Kapoor, C., Robertson, W. T., Fiscus, S., Ford, S., & Hall, C. D. (2004). No gender difference in the progression of nervous system disease in HIV infection. Journal of Acquired Immune Deficiency Syndromes, 3, 817–822.Google Scholar
  48. Shin, Y. W., Ha, T. H., Park, H. J., Moon, W. J., Chung, E. C., Lee, J. M., et al. (2005). Sex differences in the human corpus callosum: Diffusion tensor imaging study. NeuroReport, 16, 795–798.PubMedGoogle Scholar
  49. Smith, C. A., Stebbins, G. T., Bartt, R. E., Kessler, H. A., Adeyemi, O. M., Martin, E., et al. (2008). Increased white matter anisotropy and severity of depression symptoms in patients with HIV. Journal of Neuropsychiatry and Clinical Neurosciences (in press).Google Scholar
  50. Stebbins, G. T., Smith, C. A., Bartt, R. E., Kessler, H. A., Adeyemi, O. M., Martin, E., et al. (2007). HIV-associated alterations in normal appearing white matter: A voxel-wise DTI study. Journal of Acquired Immune Deficiency Syndromes, 46, 564–573.PubMedGoogle Scholar
  51. Stern, Y., McDermott, M. P., Albert, S., Palumbo, D., Selnes, O. A., McArthur, J., et al. (2001). Consortium on the therapy of HIV-dementia and related cognitive disorders. Factors associated with incident human immunodeficiency virus-dementia. Archives of Nuerology, 58(3), 473–479.Google Scholar
  52. Sullivan, E. V., Adalsteinsson, E., Hedehus, M., Ju, C., Moseley, M., Lim, K. O., et al. (2001a). Equivalent disruption of regional white matter microstructure in ageing healthy men and women. Neuroreport, 12(1), 99–104.PubMedGoogle Scholar
  53. Sullivan, E. V., Rosenbloom, M. J., Desmond, J. E., & Pfefferbaum, A. (2001b). Sex differences in corpus callosum size: relationship to age and intracranial size. Neurobiology of Aging, 22(4), 603–11.PubMedGoogle Scholar
  54. Sullivan, E. V., Rosenbloom, M., Serventi, K. L., & Pfefferbaum, A. (2004). Effects of age and sex on volumes of the thalamus, pons, and cortex. Neurobiology of Aging, 25(2), 185–192.PubMedGoogle Scholar
  55. Swaab, D. F., Chung, W. C. J., Kruijver, F. P. M., Hofman, M. A., & Hestiantoro, A. (2003). Sex differences n the hypothalamus in the different stages of human life. Neurobiology of Aging, 24, S1–S16.PubMedGoogle Scholar
  56. Szeszko, P. R., Vogel, J., Ashtari, M., Malhotra, A. K., Bates, J., Kane, J. M., et al. (2003). Sex differences in frontal lobe white matter microstructure: A DTI study. Neuroreport, 14(18), 2469–2473.PubMedGoogle Scholar
  57. Wang, C., Stebbins, G. T., Nyenhuis, D. L., de Toledo-Morrell, L., Freels, S., Gencheva, E., et al. (2006). Longitudinalchanges in white matter following ischemic stroke: a three-year follow-up study. Neurobiology of Aging, 27(12), 1827–1833.PubMedGoogle Scholar
  58. Wechsler Test of Adult Reading (2001). Psychological Assessment Resources. FL: ODESSA.Google Scholar
  59. Westerhausen, R., Kreuder, F., Sequeira, S. D. S., Walter, C., Woerner, W., Wittling, R. A., et al. (2004). Effects of handedness and gender on macro- and microstructure of the corpus callosum and its subregions: A combined high-resolution and diffusion-tensor imaging study. Cognitive Brain Research, 21, 418–426.PubMedGoogle Scholar
  60. Westerhausen, R., Walter, C., Kreuder, F., Wittling, R. A., Schweiger, E., & Wittling, W. (2003). The influence of handedness and gender on the microstructure of the human corpus callosum: A diffusion-tensor magnetic resonance imaging study. Neuroscience Letters, 351, 99–102.PubMedGoogle Scholar
  61. Wisniewski, A. B., Apel, S., Selnes, O. A., Nath, A., McArthur, J. C., & Dobs, A. S. (2005). Depressive symptoms, quality of life, and neuropsychological performance in HIV/AIDS: the impact of gender and injection drug use. Journal of Neurovirology, 11(2), 138–143.PubMedGoogle Scholar
  62. Xu, J., Kobayashi, S., Yamaguchi, S., Iijima, K., Okada, K., & Yamashita, K. (2000). Gender effects on age-related changes in brain structure. American Journal of Neuroradiology, 21, 112–118.PubMedGoogle Scholar

Further Reading

  1. Ances, B. M., Roc, A. C., Wang, J., Korczykowski, M., Okawa, J., Stern, J., et al. (2006). Caudate blood flow and volume are reduced in HIV + neurocognitively impaired patients. Neurology, 66, 862–866.PubMedGoogle Scholar
  2. Archibald, S. L., Masliah, E., Fennema-Notestine, C., Marcotte, T. D., Ellis, R. J., McCutchan, J. A., et al. (2004). Correlation of in vivo neuroimaging abnormalities with postmortem Human Immunodeficiency Virus encephalitis and dentritic loss. Archives of Neurology, 61, 369–376.PubMedGoogle Scholar
  3. Aylward, E. H., Brettschneider, P. D., McArthur, J. C., Harris, G. J., Schlaepfer, T. E., Henderer, J. D., et al. (1995). Magnetic resonance imaging measurement of gray matter volume reductions in HIV dementia. American Journal of Psychiatry, 152, 987–994.PubMedGoogle Scholar
  4. Aylward, E. H., Henderer, J. D., McArthur, J. C., Brettschneider, P. D., Harris, G. J., Barta, P. E., et al. (1993). Reduced basal ganglia volume in HIV-1-associated dementia: results from quantitative neuroimaging. Neurology, 43, 2099–2104.PubMedGoogle Scholar
  5. Bornstein, R. A., Chakeres, D., Brogan, M., Nasrallah, H. A., Fass, R. J., Para, M., et al. (1992). Magnetic resonance imaging of white matter lesions in HIV infection. Journal of Neuropsychiatry and Clinical Neurosciences, 4, 174–178.PubMedGoogle Scholar
  6. Broderick, D. F., Wippold, F. J., Clifford, D. B., Kido, D., & Wilson, B. S. (1993). White matter lesions and cerebral atrophy on MR images in patients with and without AIDS dementia complex. American Journal of Roentgenology, 161, 177–181.PubMedGoogle Scholar
  7. Chiang, M. C., Dutton, R. A., Hayashi, K. M., Lopez, O. L., Aizenstein, H. J., Toga, A. W., et al. (2007). 3D pattern of brain atrophy in HIV/AIDS visualized using tensor-based morphometry. Neuroimage, 34, 44–60.PubMedGoogle Scholar
  8. Chong, W. K., Sweeney, B., Wilkinson, I. D., Paley, M., Hall-Craggs, M. A., Kendall, B. E., et al. (1993). Proton spectroscopy of the brain in HIV infection: Correlation with clinical, immunologic, and MR imaging findings. Radiology, 188, 119–1124.PubMedGoogle Scholar
  9. Cloak, C. C., Chang, L., & Ernst, T. (2004). Increased frontal white matter diffusion is associated with glial metabolites and psychomotor slowing in HIV. Journal of Neuroimmunology, 157, 147–152.PubMedGoogle Scholar
  10. Cohen, W. A., Maravilla, K. R., Gerlach, R., Claypoole, K., Collier, A. C., Marra, C., et al. (1992). Prospective cerebral MR study of HIV seropositive and seronegative men: Correlation of MR findings with neurologic, neuropsychologic, and cerebrospinal fluid analysis. American Journal of Neuroradiology, 13, 1231–1240.PubMedGoogle Scholar
  11. Dal Pan, G. J., McArthur, J. H., Aylward, E., Selnes, O. A., Nance-Sproson, T. E., Kumar, A., et al. (1992). Patterns of cerebral atrophy in HIV-1-infected individuals: Results of a quantitative MRI analysis. Neurology, 42, 2125–2130.PubMedGoogle Scholar
  12. Di Sclafani, V., Mackay, R. D., Meyerhoff, D. J., Norman, D., Weiner, M. W., & Fein, G. (1997). Brain atrophy in HIV infection is more strongly associated with CDC clinical stage than with cognitive impairment. Journal of the International Neuropsychological Society, 3, 276–287.PubMedGoogle Scholar
  13. Dooneief, G., Bello, J., Todak, G., Mun, I. K., Marder, K., Malouf, R., et al. (1992). A prospective controlled study of magnetic resonance imaging of the brain in gay men and parenteral drug users with human immunodeficiency virus infection. Archives of Neurology, 49, 38–43.PubMedGoogle Scholar
  14. Elovaara, I., Poutiainen, E., Raininko, R., Valanne, L., Virta, A., Valle, S. L., et al. (1990). Mild brain atrophy in early HIV infection: The lack of association with cognitive deficits and HIV-specific intrathecal immune response. Journal of Neurological Sciences, 99, 121–136.Google Scholar
  15. Filippi, C. G., Sze, G., Farber, S. J., Shahmanesh, M., & Selwyn, P. A. (1998). Regression of HIV encephalopathy and basal ganglia hyperintensity abnormality at MR imaging in patients with AIDS after the initiation of protease inhibitor therapy. Radiology, 206, 491–498.PubMedGoogle Scholar
  16. Filippi, C. G., Ulug, A. M., Ryan, E., Ferrando, S. J., & van Gorp, W. (2001). Diffusion tensor imaging of patients with HIV and normal-appearing white matter on MR images of the brain. American Journal of Neuroradiology, 22, 277–283.PubMedGoogle Scholar
  17. Flowers, C. H., Mafee, M. F., Crowell, R., Raofi, B., Arnold, P., Dobben, G., et al. (1990). Encephalopathy in AIDS patients: Evaluation with MR imaging. American Journal of Neuroradiology, 11, 1235–1245.PubMedGoogle Scholar
  18. Ge, Y., Kolson, D. L., Babb, J. S., Mannon, L. J., & Grossman, R. I. (2003). Whole brain imaging of HIV-infected patients: quantitative analysis of magnetization transfer ratio histogram and fractional brain volume. American Journal of Neuroradiology, 24, 82–87.PubMedGoogle Scholar
  19. Grant, I., Atkinson, J. H., Hesselink, J. R., Kennedy, C. J., Richman, D. D., Spector, S. A., et al. (1987). Evidence for early central nervous system involvement in the acquired immunodeficiency syndrome (AIDS) and other human immunodeficiency virus (HIV) infections. Studies with neuropsychologic testing and magnetic resonance imaging. Annals of Internal Medicine, 107, 828–836.PubMedGoogle Scholar
  20. Hall, M., Whaley, R., Robertson, K., Hamby, S., Wilkins, J., & Hall, C. (1996). The correlation between neuropsychological and neuroanatomic changes over time in asymptomatic and symptomatic HIV-1-infected individuals. Neurology, 46, 1697–1702.PubMedGoogle Scholar
  21. Handelsman, L., Song, I. S., Losonczy, M., Park, S., Jacobson, J., Wiener, J., et al. (1993). Magnetic resonance abnormalities in HIV infection: A study in the drug-user risk group. Psychiatry Research, 47, 175–186.PubMedGoogle Scholar
  22. Harrison, M. J., Newman, S. P., Hall-Craggs, M. A., Fowler, C. J., Miller, R., Kendall, B. E., et al. (1998). Evidence of CNS impairment in HIV infection: Clinical, neuropsychological, EEG, and MRI/MRS study. Journal of Neurology, Neurosurgery, and Psychiatry, 65, 301–307.PubMedGoogle Scholar
  23. Hestad, K., McArthur, J. H., Dal Pan, G. J., Selnes, O. A., Nance-Sproson, T. E., Aylward, E., et al. (1993). Regional brain atrophy in HIV-1 infection: Association with specific neuropsychological test performance. Acta Neurologica Scandinavica, 88, 112–118.PubMedGoogle Scholar
  24. Heyes, M. P., Ellis, R. J., Ryan, L., Childers, M. E., Grant, I., Wolfson, T., et al. (2001). Elevated cerebrospinal fluid quinolinic acid levels are associated with region-specific cerebral volume loss in HIV infection. Brain, 124, 1033–1042.PubMedGoogle Scholar
  25. Jarvik, J. G., Hesselink, J. R., Kennedy, C., Teschke, R., Wiley, C., Spector, S., et al. (1988). Acquired immunodeficiency syndrome: Magnetic resonance patterns of brain involvement with pathologic correlation. Archives of Neurology, 45, 731–736.PubMedGoogle Scholar
  26. Jernigan, T. L., Archibald, S., Hesselink, J. R., Atkinson, J. H., Velin, R. A., McCutchan, J. A., et al. (1993). Magnetic resonance imaging morphometric analysis of cerebral volume loss in Human Immunodeficiency Virus infection. Archives of Neurology, 50, 250–255.PubMedGoogle Scholar
  27. Jernigan, T. L., Gamst, A. C., Archibald, S. L., Fennema-Notestine, C., Mindt, M. R., Marcotte, T. D., et al. (2005). Effects of methamphetamine dependence and HIV infection on cerebral morphology. American Journal of Psychiatry, 162, 1461–1472.PubMedGoogle Scholar
  28. Kieburtz, K., Ketonen, L., Cox, C., Grossman, H., Holloway, R., Booth, H., et al. (1996). Cognitive performance and regional brain volume in human immunodeficiency virus type 1 infection. Archives of Neurology, 53, 155–158.PubMedGoogle Scholar
  29. Kieburtz, K. D., Ketonen, L., Zettelmaier, A. E., Kido, D., Caine, E. D., & Simon, J. H. (1990). Magnetic resonance imaging findings in HIV cognitive impairment. Archives of Neurology, 47, 643–645.PubMedGoogle Scholar
  30. Koralnik, I. J., Beaumanoir, A., Hausler, R., Kohler, A., Safran, A. B., Delacoux, R., et al. (1990). A controlled study of early neurologic abnormalities in men with asymptomatic human immunodeficiency virus infection. New England Journal of Medicine, 323, 864–870.PubMedGoogle Scholar
  31. Lepore, N., Brun, C. A., Chiang, M. C., Chou, Y. Y., Dutton, R. A., Hayashi, K. M., et al. (2007). Multivariate statistics of the Jacobian matrices in tensor based morphometry and their application to HIV/AIDS. Medical Image Computing and Computer-Assisted Intervention International Conference on Medical Image Computing and Computer-Assisted Intervention, 9(Pt 1), 191–198.Google Scholar
  32. Levin, H. S., Williams, D. H., Borucki, M. J., Hillman, G. R., Williams, J. B., Guinto, F. C., et al. (1990). Magnetic resonance imaging and neuropsychological findings in human immunodeficiency virus infection. Journal of Acquired Immune Deficiency Syndromes, 3, 757–762.PubMedGoogle Scholar
  33. McArthur, J. C., Kumar, A. J., Johnson, D. W., Selnes, O. A., Becker, J. T., Herman, C., et al. (1990). Incidental white matter hyperintensities on magnetic resonance imaging in HIV-1 infection: Multicenter AIDS Cohort Study. Journal of Acquired Immune Deficiency Syndromes, 3, 252–259.PubMedGoogle Scholar
  34. Paley, M. N., Chong, W. K., Wilkinson, I. D., Shepherd, J. K., Clews, A. M., Sweeney, B. J., et al. (1994). Cerebrospinal fluid-intracranial volume ratio measurements in patients with HIV infection: CLASS image analysis technique. Radiology, 190, 879–886.PubMedGoogle Scholar
  35. Patel, S. H., Kolson, D. L., Glosser, G., Matozzo, I., Ge, Y., Babb, J. S., et al. (2002). Correlation between percentage of brain parenchymal volume and neurocognitive performance in HIV-infected patients. American Journal of Neuroradiolgy, 23, 543–549.Google Scholar
  36. Paul, R. H., Brickman, A. M., Navia, B., Hinkin, C., Malloy, P. F., Jefferson, A. L., et al. (2005). Apathy is associated with volume of the nucleus accumbens in patients infected with HIV. Journal of Neuropsychiatry and Clinical Neurosciences, 17, 167–171.PubMedGoogle Scholar
  37. Pfefferbaum, A., Rosenbloom, M. J., Adalsteinsson, E., & Sullivan, E. V. (2007). Diffusion tensor imaging with quantitative fibre tracking in HIV infection and alcoholism comorbidity: Synergistic white matter damage. Brain, 130, 48–64.PubMedGoogle Scholar
  38. Pfefferbaum, A., Rosenbloom, M. J., Rohlfing, T., Adalsteinsson, E., Kemper, C. A., Deresinski, S., et al. (2006). Contribution of alcoholism to brain dysmorphology in HIV infection: Effects on the ventricles and corpus callosum. NeuroImage, 33, 239–251.PubMedGoogle Scholar
  39. Pomara, N., Crandall, D. T., Choi, S. J., Johnson, G., & Lim, K. O. (2001). White matter abnormalities in HIV-1 infection: A diffusion tensor imaging study. Psychiatry Research, 106, 15–24.PubMedGoogle Scholar
  40. Post, M. J., Berger, J. R., Duncan, R., Quencer, R. M., Pall, L., & Winfield, D. (1993). Asymptomatic and neurologically symptomatic HIV-seropositive subjects: Results of long-term MR imaging and clinical follow-up. Radiology, 188, 727–733.PubMedGoogle Scholar
  41. Post, M. J., Berger, J. R., & Quencer, R. M. (1991). Asymptomatic and neurologically symptomatic HIV-seropositive individuals: Prospective evaluation with cranial MR imaging. Radiology, 178, 131–139.PubMedGoogle Scholar
  42. Post, M. J., Tate, L. G., Quencer, R. M., Hensley, G. T., Berger, J. R., Sheremata, W. A., et al. (1988). CT, MR, and pathology in HIV encephalitis and meningitis. American Journal of Roentgenology, 151, 373–380.PubMedGoogle Scholar
  43. Post, M. J., Levin, B. E., Berger, J. R., Duncan, R., Quencer, R. M., & Calabro, G. (1992). Sequential cranial MR findings of asymptomatic and neurologically symptomatic HIV + subjects. American Journal of Neuroradiology, 13, 359–370.PubMedGoogle Scholar
  44. Poutiainen, E., Elovaara, I., Raininko, R., Hokkanen, L., Valle, S. L., Lahdevirta, J., & Iivanainen, M. (1993). Cognitive performance in HIV-1 infection: Relationship to severity of disease and brain atrophy. Acta Neurologica Scandinavica, 87, 88–94.PubMedCrossRefGoogle Scholar
  45. Ragin, A. B., Storey, P., Cohen, B. A., Edelman, R. R., & Epstein, L. G. (2004a). Disease burden in HIV-associated cognitive impairment: a study of whole-brain imaging measures. Neurology, 63, 2293–2297.PubMedGoogle Scholar
  46. Ragin, A. B., Storey, P., Cohen, B. A., Epstein, L. G., & Edelman, R. R. (2004b). Whole brain diffusion tensor imaging in HIV-associated cognitive impairment. American Journal of Neuroradiology, 25, 195–200.PubMedGoogle Scholar
  47. Ragin, A. B., Wu, Y., Storey, P., Cohen, B. A., Edelman, R. R., & Epstein, L. G. (2005). Diffusion tensor imaging of subcortical brain injury in patients infected with human immunodeficiency virus. Journal of Neurovirology, 11, 292–298.PubMedGoogle Scholar
  48. Raininko, R., Elovaara, I., Virta, A., Valanne, L., Haltia, M., & Valle, S. L. (1992). Radiological study of the brain at various stages of human immunodeficiency virus infection: early development of brain atrophy. Neuroradiology, 34, 190–196.PubMedGoogle Scholar
  49. Samuelsson, K., Pirskanen-Matell, R., Bremmer, S., Hindmarsh, T., Nilsson, B. Y., & Persson, H. E. (2006). The nervous system in early HIV infection: A prospective study through 7 years. European Journal of Neurology, 13, 283–291.PubMedGoogle Scholar
  50. Sonnerborg, A., Saaf, J., Alexius, B., Strannegard, O., Wahlund, L. O., & Wetterberg, L. (1990). Quantitative detection of brain aberrations in human immunodeficiency virus type 1-infected individuals by magnetic resonance imaging. Journal of Infectious Diseases, 162, 1245–1251.PubMedGoogle Scholar
  51. Stout, J. C., Ellis, R. J., Jernigan, T. L., Archibald, S. L., Abramson, I., Wolfson, T., et al. (1998). Progressive cerebral volume loss in human immunodeficiency virus infection: A longitudinal volumetric magnetic resonance imaging study. Archives of Neruology, 55, 161–168.Google Scholar
  52. Thompson, P. M., Dutton, R. A., Hayashi, K. M., Lu, A., Lee, S. E., Lee, J. Y., et al. (2006). 3D mapping of ventricular and corpus callosum abnormalities in HIV/AIDS. Neuroimage, 31(1), 12–23.PubMedGoogle Scholar
  53. Thompson, P. M., Dutton, R. A., Hayashi, K. M., Toga, A. W., Lopez, O. L., Aizenstein, H. J., et al. (2005). Thinning of the cerebral cortex visualized in HIV/AIDS reflects CD4 + T lymphocyte decline. Proceedings of the National Academy of Sciences of the United States of America, 102(43), 15647–15652.PubMedGoogle Scholar
  54. Thurnher, M. M., Castillo, M., Stadler, A., Rieger, A., Schmid, B., & Sundgren, P. C. (2005). Diffusion-tensor MR imaging of the brain in human immunodeficiency virus-positive patients. American Journal of Neuroradiology, 26(9), 2275–2281.PubMedGoogle Scholar
  55. Thurnher, M. M., Schindler, E. G., Thurnher, S. A., Pernerstorfer-Schon, H., Kleibl-Popov, C., & Rieger, A. (2000). Highly active antiretroviral therapy for patients with AIDS dementia complex: Effect on MR imaging findings and clinical course. American Journal of Neuroradiology, 21, 670–678.PubMedGoogle Scholar
  56. Wenserski, F., von Giesen, H. J., Wittsack, H. J., Aulich, A., & Arendt, G. (2003). Human immunodeficiency virus 1-associated minor motor disorders: Perfusion-weighted MR imaging and H MR spectroscopy. Radiology, 228, 185–192.PubMedGoogle Scholar
  57. Wilkinson, I. D., Lunn, S., Miszkiel, K. A., Miller, R. F., Paley, M. N., Williams, I., et al. (1997). Proton MRS and quantitative MRI assessment of the short term neurological response to antiretroviral therapy in AIDS. Journal of Neurology, Neruosurgery, and Psychiatry, 63, 477–482.CrossRefGoogle Scholar
  58. Wu, Y., Storey, P., Cohen, B. A., Epstein, L. G., Edelman, R. R., & Ragin, A. (2006). Diffusion alterations in corpus callosum of patients with HIV. American Journal of Neuroradiology, 27(3), 656–660.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Clifford A. Smith
    • 1
  • Glenn T. Stebbins
    • 1
  • Russell E. Bartt
    • 1
    • 2
    • 3
  • Harold A. Kessler
    • 1
    • 2
    • 3
  • Oluwatoyin M. Adeyemi
    • 1
    • 2
    • 3
  • Eileen Martin
    • 4
  • Roland Bammer
    • 5
  • Michael E. Moseley
    • 5
  1. 1.Rush University Medical CenterChicagoUSA
  2. 2.John H. Stroger, Jr. Hospital of Cook CountyChicagoUSA
  3. 3.Ruth M. Rothstein CORE CenterChicagoUSA
  4. 4.University of Illinois—ChicagoChicagoUSA
  5. 5.Stanford UniversityStanfordUSA

Personalised recommendations