Brain Imaging and Behavior

, Volume 2, Issue 1, pp 39–48 | Cite as

Occipital-temporal Reduction and Sustained Visual Attention Deficit in Prenatal Alcohol Exposed Adults

  • Zhihao Li
  • Claire D. Coles
  • Mary Ellen Lynch
  • Xiangyang Ma
  • Scott Peltier
  • Xiaoping Hu
Article

Abstract

Visual attention problems have been reported in association with prenatal alcohol exposure (PAE). With related behavioral data documented in literature, further investigation of this PAE effect would benefit from integrating functional and anatomical imaging data to ascertain its neurobiological basis. The current study investigated the possible functional and anatomical bases for the PAE-related visual sustained attention deficit. Functional magnetic resonance imaging (fMRI) data were collected while the subjects performed a sustained visual attention task. High resolution, three dimensional anatomical images were also collected for morphometric evaluation. In the alcohol-affected subjects, we observed a significant white and gray matter volume reduction in the occipital-temporal area. Meanwhile, their fMRI activations in the same region resided more superiorly than that of the controls resulting in reduced activation in the ventral occipital-temporal area. The location of this PAE functional abnormality approximately matches that of the significant structural reduction. In addition to the well documented corpus callosum abnormalities observed in PAE subjects, the present results reveal a teratogenic effect on the occipital-temporal area. Furthermore, as the occipital-temporal area plays an important role in visual attention, the current observation suggests a neurobiological underpinning for the PAE related deficit in sustained visual attention.

Keywords

Fetal alcohol exposure Sustained attention Functional magnetic resonance imaging Structural imaging 

References

  1. Archibald, S. L., Fennema-Notestine, C., Gamst, A., Riley, E. P., Mattson, S. N., & Jernigan, T. L. (2001). Brain dysmorphology in individuals with severe prenatal alcohol exposure. Developmental Medicine & Child Neurology, 43, 148–154.CrossRefGoogle Scholar
  2. Ashburner, J., & Friston, K. J. (1999). Nonlinear spatial normalization using basis functions. Human Brain Mapping, 7, 254–266.PubMedCrossRefGoogle Scholar
  3. Ashburner, J., & Friston, K. J. (2000). Voxel-based morphometry—The methods. Neuroimage, 11, 805–821.PubMedCrossRefGoogle Scholar
  4. Bhatara, V. S., Lovrein, F., Kirkeby, J., Swayze, V., Unruh, E., & Johnson, V. (2002). Brain function in fetal alcohol syndrome assessed by single photon emission computed tomography. South Dakota Journal of Medicine, 55, 59–62.PubMedGoogle Scholar
  5. Bookheimer, S. Y., & Sowell, E. R. (2005). Brain imaging in FAS commentary on the article by Malisza et al. Pediatric Research, 58, 1148–1149.PubMedCrossRefGoogle Scholar
  6. Bookstein, F. L., Streissguth, A. P., Sampson, P. D., Connor, P. D., & Barr, H. M. (2002). Corpus callosum shape and neuropsychological deficits in adult males with heavy fetal alcohol exposure. Neuroimage, 15, 233–251.PubMedCrossRefGoogle Scholar
  7. Brown, R. T., Coles, C. D., Smith, I. E., Platzman, K. A., Silverstein, J., Erickson, S., et al. (1991). Effects of prenatal alcohol exposure at school age. II. Attention and behavior. Neurotoxicology and Teratology, 13, 369–376.PubMedCrossRefGoogle Scholar
  8. Cohen, M. S. (1997). Parametric analysis of fMRI data using linear systems methods. Neuroimage, 6, 93–103.PubMedCrossRefGoogle Scholar
  9. Coles, C. D. (2001). Fetal alcohol exposure and attention: Moving beyond ADHD. Alcohol Research & Health, 25, 199–203.Google Scholar
  10. Coles, C. D., Platzman, K. A., Lynch, M. E., & Freides, D. (2002). Auditory and visual sustained attention in adolescents prenatally exposed to alcohol. Alcoholism: Clinical and Experimental Research, 26, 263–271.Google Scholar
  11. Coles, C. D., Platzman, K. A., RaskindHood, C. L., Brown, R. T., Falek, A., & Smith, I. E. (1997). A comparison of children affected by prenatal alcohol exposure and attention deficit hyperactivity disorder. Alcoholism: Clinical and Experimental Research, 21, 150–161.Google Scholar
  12. Coles, C. D., Smith, I., Fernhoff, P. M., & Falek, A. (1985). Neonatal neurobehavioral characteristics as correlates of maternal alcohol use during gestation. Alcoholism: Clinical and Experimental Research, 9, 454–460.CrossRefGoogle Scholar
  13. Connor, P. D., Sampson, P. D., Bookstein, F. L., Barr, H. M., & Streissguth, A. P. (2000). Direct and indirect effects of prenatal alcohol damage on executive function. Developmental neuropsychology, 18, 331–354.PubMedCrossRefGoogle Scholar
  14. Connor, P. D., Streissguth, A. P., Sampson, P. D., Bookstein, F. L., & Barr, H. M. (1999). Individual differences in auditory and visual attention among fetal alcohol-affected adults. Alcoholism: Clinical and Experimental Research, 23, 1395–1402.Google Scholar
  15. Corbetta, M., Miezin, F. M., Dobmeyer, S., Shulman, G. L., & Petersen, S. E. (1991). Selective and divided attention during visual discriminations of shape, color, and speed: Functional anatomy by positron emission tomography. Journal of Neuroscience, 11, 2383–2402.PubMedGoogle Scholar
  16. Fujita, I., Tanaka, K., Ito, M., & Cheng, K. (1992). Columns for visual features of objects in monkey inferotemporal cortex. Nature, 360, 343–346.PubMedCrossRefGoogle Scholar
  17. Good, C. D., Johnsrude, I. S., Ashburner, J., Henson, R. N. A., Friston, K. J., & Frackowiak, R. S. J. (2001). A voxel-based morphometric study of aging in 465 normal adult human brains. Neuroimage, 14, 21–36.PubMedCrossRefGoogle Scholar
  18. Guerri, C., & RenauPiqueras, J. (1997). Alcohol, astroglia, and brain development. Molecular Neurobiology, 15, 65–81.PubMedCrossRefGoogle Scholar
  19. Kanwisher, N., & Wojciulik, E. (2000). Visual attention: Insights from brain imaging. Nature Reviews. Neuroscience, 1, 91–100.PubMedCrossRefGoogle Scholar
  20. Kastner, S., Weerd, P. D., Desimone, R., & Ungerleider, L. G. (1998). Mechanisms of directed attention in the human extrastriate cortex as revealed by functional MRI. Science, 282, 108–111.PubMedCrossRefGoogle Scholar
  21. Kopera-Frye, K., Olson, H. C., & Streissguth, A. P. (1997). Teratogenic effects of alcohol on attention. In J. A. J. T. BurackEnns (Ed.) Attention, development and psychopathology (pp. 171–204). New York: Guilford.Google Scholar
  22. Le, T. H., Pardo, J. V., & Hu, X. (1998). 4T-fMRI study of nonspatial shifting of selective attention: Cerebellar and parietal contributions. Journal of Neurophysiology, 79, 1535–1548.PubMedGoogle Scholar
  23. Luck, S. J., Chelazzi, L., Hillyard, S. A., & Desimone, R. (1997). Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. Journal of Neurophysiology, 77, 24–42.PubMedGoogle Scholar
  24. Ma, X., Coles, C. D., Lynch, M. E., LaConte, S. M., Zurkiya, O., Wang, D., et al. (2005). Evaluation of corpus callosum anisotropy in young adults with fetal alcohol syndrome according to diffusion tensor imaging. Alcoholism: Clinical and Experimental Research, 29, 1214–1222.CrossRefGoogle Scholar
  25. Malisza, K. L., Allman, A.-A., Shiloff, D., Jakobson, L., Longstaffe, S., & Chudley, A. E. (2005). Evaluation of spatial working memory function in children and adults with fetal alcohol spectrum disorders: A functional magnetic resonance imaging study. Pediatric Research, 58, 1150–1157.PubMedCrossRefGoogle Scholar
  26. Mattson, S. N., Calarco, K. E., & Lang, A. R. (2006). Focused and shifting attention in children with heavy prenatal alcohol exposure. Neuropsychology, 20, 361–369.PubMedCrossRefGoogle Scholar
  27. Mattson, S. N., Riley, E. P., Delis, D. C., Stern, C., & Jones, K. L. (1996). Verbal learning and memory in children with fetal alcohol syndrome. Alcoholism: Clinical and Experimental Research, 20, 810–816.CrossRefGoogle Scholar
  28. Metz, C. E. (1978). Basic principles of ROC analysis. Seminars in Nuclear Medicine, 8, 283–298.PubMedCrossRefGoogle Scholar
  29. Mirsky, A. F. (1996). Disorders of attention: a neuropsychological perspective. In G. R. N. A. LyonKrasnegor (Ed.) Attention, memory and executive function (pp. 71–95). Baltimore: Paul H Brookes.Google Scholar
  30. Nanson, J. L., & Hiscock, M. (1990). Attention deficits in children exposed to alcohol prenatally. Alcoholism: Clinical and Experimental Research, 14, 656–661.CrossRefGoogle Scholar
  31. Riikonen, R., Salonen, I., Partanen, K., & verho, S. (1999). Brain perfusion SPECT and MRI in foetal alcohol syndrome. Developmental Medicine & Child Neurology, 41, 652–659.CrossRefGoogle Scholar
  32. Riley, E. P., Mattson, S. N., Sowell, E. R., Jernigan, T. L., Sobel, D. F., & Jones, K. L. (1995). Abnormalities of the corpus callosum in children prenatally exposed to alcohol. Alcoholism: Clinical and Experimental Research, 19, 1198–1202.CrossRefGoogle Scholar
  33. Schonfeld, A. M., Mattson, S. N., Lang, A. R., Delis, D. C., & Riley, E. P. (2001). Verbal and nonverbal fluency in children with heavy prenatal alcohol exposure. Journal of Studies on Alcohol, 62, 239–246.PubMedGoogle Scholar
  34. Sowell, E. R., Mattson, S. N., Thompson, P. M., Jernigan, T. L., Riley, E. P., & Toga, A. W. (2001a). Mapping callosal morphology and cognitive correlates: Effect of heavy prenatal alcohol exposure. Neurology, 57, 235–244.PubMedGoogle Scholar
  35. Sowell, E. R., Thompson, P. M., Mattson, S. N., Tessner, K. D., Jernigan, T. L., Riley, E. P., et al. (2001b). Voxel-based morphometric analysis of the brain in children and adolescents prenatally exposed to alcohol. Neuroreport, 12, 515–523.PubMedCrossRefGoogle Scholar
  36. Sowell, E. R., Thompson, P. M., Mattson, S. N., Tessner, K. D., Jernigan, T. L., Riley, E. P., et al. (2002). Regional brain shape abnormalities persist into adolescence after heavy prenatal alcohol exposure. Cerebral Cortex, 12, 856–865.PubMedCrossRefGoogle Scholar
  37. Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. New York: Thieme Medical Publishers, Inc.Google Scholar
  38. Till, C., Westall, C. A., Koren, G., Nulman, I., & Rovet, J. F. (2005). Vision abnormalities in young children exposed prenatally to organic solvents. Neurotoxicology, 26(4), 599–613.PubMedCrossRefGoogle Scholar
  39. Wilkinson, F., & Wilson, H. R. (2001). Global processes in from vision and their relationship to spatial attention. In M. L. JenkinHarris (Ed.)Vision and attention (pp. 63–81). New York: Springer.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Zhihao Li
    • 1
  • Claire D. Coles
    • 2
    • 3
  • Mary Ellen Lynch
    • 2
  • Xiangyang Ma
    • 1
  • Scott Peltier
    • 1
  • Xiaoping Hu
    • 1
  1. 1.Biomedical Imaging Technology Center, Department of Biomedical EngineeringEmory University & Georgia Institute of TechnologyAtlantaUSA
  2. 2.Department of Psychiatry and Behavioral SciencesEmory University School of MedicineAtlantaUSA
  3. 3.Department of Psychiatry and Behavioral SciencesEmory University School of MedicineAtlantaUSA

Personalised recommendations